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REVIEW ARTICLE

PP2A as a master regulator of the cell cycle

Nathan Wlodarchak and Yongna Xing

McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA

Abstract

Protein phosphatase 2A (PP2A) plays a critical multi-faceted role in the regulation of the cell
cycle. It is known to dephosphorylate over 300 substrates involved in the cell cycle, regulating
almost all major pathways and cell cycle checkpoints. PP2A is involved in such diverse
processes by the formation of structurally distinct families of holoenzymes, which are regulated
spatially and temporally by specific regulators. Here, we review the involvement of PP2A in the
regulation of three cell signaling pathways: wnt, mTOR and MAP kinase, as well as the G1!S
transition, DNA synthesis and mitotic initiation. These processes are all crucial for proper cell
survival and proliferation and are often deregulated in cancer and other diseases.
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Introduction

Numerous proteins are involved in regulating the complex

processes in cell division, and kinases and phosphatases are

the primary regulators. Several kinases and phosphatases are

well understood and reviewed in detail (Belle et al., 1990;

Bononi et al., 2011; Fisher et al., 2012; Holt, 2012; Hunter,

1995; Mochida & Hunt, 2012). It is clear from early work that

the initial focus on cell cycle regulation was kinases, and

phosphatases were thought of merely as housekeeping

enzymes. More recently, phosphatases are increasingly

appreciated for their tight regulation and specific action on

key players in the cell cycle (Janssens & Goris, 2001; Virshup

& Shenolikar, 2009). One of the most versatile and important

phosphatases involved in cell division is protein phosphatase

2A (PP2A). PP2A regulates every stage of the cell cycle in

several critical pathways and, not surprisingly, has been

widely implicated in tumor suppression (Eichhorn et al.,

2009). As such, PP2A is being actively investigated as a

therapeutic target (Sangodkar et al., 2015). This review is an

attempt to aggregate the numerous substrates dephosphory-

lated by PP2A and discuss its regulatory activity in major

pathways at each stage of the cell cycle.

Protein phosphatase 2A: a complex and diverse
family of phosphatases

Background

Eukaryotic phosphatases can be divided into three super

families: the serine/threonine phosphatases (PSPs), the

tyrosine phosphatases (PTPs) and the dual specificity

phosphatases (DSPs) [reviewed in (Hunter, 1995; Shi, 2009;

Virshup & Shenolikar, 2009)]. There are around 100 PTPs,

approximately equivalent to the number of tyrosine kinases in

the genome. Over 400 serine/threonine kinases are expressed

in the human proteome (Manning et al., 2002), exceeding that

of PSPs by more than 10 fold. Serine/threonine phosphoryl-

ation constitutes more than 98% of total protein phosphoryl-

ation inside mammalian cells; however, the number of genes

encoding PSPs (7) is very small. This controversy is

reconciled by the fact that some of the PSPs form a large

number of diverse oligomeric complexes. In particular, PP2A

forms �100 heterotrimeric holoenzymes and protein phos-

phatase 1 (PP1) forms �400 heterodimeric holoenzymes.

Some kinases also form oligomeric complexes, such as cell

cycle dependent kinases (CDKs) and mTOR, on a scale much

smaller than PP2A and PP1 though, underlying that complex

and tight control of both kinases and phosphatases are

important for cellular processes.

The PSPs are further divided into three families: phospho-

protein phosphatases (PPPs), metal-dependent protein phos-

phatases (PPMs) and aspartate-based phosphatases (Figure 1).

The PPP family is the largest family of phosphatases, and

many PPPs are involved in cell cycle regulation, including

PP2A (Hunter, 1995; Shi, 2009; Virshup & Shenolikar, 2009).

The PPP family phosphatases have a structurally conserved

active site configuration. Two catalytic metal ions are

coordinated by six conserved residues [two aspartate (D),

one asparagine (N) and three histidine (H) residues], and a

catalytic water molecule. Phosphate binding is coordinated by

one conserved histidine and two arginine (R) residues. The

dephosphorylation reaction proceeds via an SN2 mechanism

with the activated water serving as a nucleophile to attack the

phosphate group attached to Ser or Thr residues (Shi, 2009).

PP2A is one of the most complex members in the PPP family,
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regulating diverse physiological and cellular processes such

as neuronal stabilization, cardiac muscle function and the cell

cycle. As such, it is implicated in many human diseases such

as Alzheimer’s disease, cardiac disease and cancer (Eichhorn

et al., 2009; Heijman et al., 2013; Kotlo et al., 2012; Martin

et al., 2013). PP2A affects such variety of processes due to the

formation of diverse heterotrimeric holoenzymes.

Regulation and activation of PP2A

Each PP2A holoenzyme is formed by a combination of

three subunits: a common catalytic (C or PP2Ac) subunit

containing the active site, a regulatory (B) subunit which

confers substrate specificity and a common scaffolding (A)

subunit that holds B and C together (Xu et al., 2006).

There are two isoforms, a and b, for both A and C, and

they share high sequence homology. The a isoform for each

is expressed at a much higher level and is the predominant

isoform studied in PP2A research. In addition to A and B

subunits, cellular PP2Ac is also found associated with a4

protein and TOR Signaling Pathway Regulator-like (TIPRL)

(Nakashima et al., 2013). Extensive efforts on understand-

ing the structural and biochemical basis of PP2A regulation

illuminated a linear pathway for the biogenesis of PP2A

holoenzymes (Figure 2). The exact function of a4 on

PP2Ac has been difficult to unravel. Our recent structural

evidence suggests it preferentially binds to the partially

folded PP2Ac and stabilizes it for stable latency (Jiang

et al., 2013). a4 stabilizes PP2Ac in part by protecting it

from ubiquitination by Midline 1 (MID1) and preventing its

subsequent degradation (Liu et al., 2001; Short et al.,

2002). This provides a pool of latent PP2Ac for the

biogenesis of diverse heterotrimeric holoenzymes while

simultaneously preventing the unregulated phosphatase

activity of free PP2Ac and protecting cells from non-

targeted dephosphorylation (Jiang et al., 2013).

Consequently, PP2A must be activated before being

assembled into active holoenzymes. The phosphotyrosyl

phosphatase activator (PTPA), now known as PP2A-specific

phosphatase activator, plays a critical role in PP2A activation

(Guo et al., 2014). PTPA stabilizes an active conformation of

the active site and facilitates the loading of catalytic metal

ions (Guo et al., 2014). PP2A together with PTPA forms a

combined ATP-binding pocket, which orients the g-phosphate

of ATP to directly chelate catalytic metal ions. Following

activation, the phosphatase active site catalyzes ATP hydroly-

sis. This is crucial for efficient loading of authentic catalytic

metal ions and acquisition of pSer/Thr-specific phosphatase

activity (Guo et al., 2014). Evidence suggests there is a

Zn2+ ion in the active site and that ATP is required to load a

Figure 2. PP2A biogenesis and holoenzyme
assembly is regulated by unique factors. a4
protects inactive PP2Ac from ubiquitination
by MID1. Activating metal ions are loaded by
PTPA, and active PP2Ac binds to the scaffold
subunit (A). The C-terminal tail of PP2Ac
can be methylated by LCMT-1 and reversed
by PME-1. Active, methylated PP2A-AC can
then form holoenzymes with one B subunit.
These available B subunits are divided into
four families: B, B0, B00 and B-, each with
unique characteristics and regulation. (see
colour version of this figure at www.infor-
mahealthcare.com/bmg).

Figure 1. Serine/threonine phosphatases are classified based on bio-
chemical mechanism. They are divided into three families, the aspartate-
based phosphatases, the metal-dependent protein phosphatases and the
phosphoprotein phosphatases. The phosphoprotein phosphatases have
similar active site configurations and require catalytic metal ions in the
active site. PP2A is a member of this family. Adapted from Stanevich
(2013). (see colour version of this figure at www.informahealthcare.com/
bmg).
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Mg2+ ion into the second position to activate PP2A

(Guo et al., 2014).

PP2Ac also undergoes post-translational modification on

its unstructured carboxy-terminal tail (Janssens et al., 2008;

Lee & Pallas, 2007); phosphorylation on T304 and Y307 and

carboxymethylation on L309 (Low et al., 2014). The latter is

reversibly controlled by PP2A-specific methyltransferase

known as leucine carboxy methyltransferase (LCMT-1), and

by PP2A-specific methylesterase 1 (PME-1) (Stanevich et al.,

2011; Xing et al., 2008). PP2A methylation is essential for

cellular function, and cells will undergo apoptosis in the

absence of LCMT-1 (Lee & Pallas, 2007). Reduction in

LCMT-1 expression or over-expression of PME-1 can

promote transformation through Akt or S6K pathways

(Jackson & Pallas, 2012). Methylation is crucial for the

formation of stable heterotrimeric B/PR55 family holoen-

zymes inside cells (Longin et al., 2007), but it is not required

for in vitro assembly nor is the carboxymethylated PP2Ac tail

visible in the PP2A-Ba structure (Xu et al., 2008).

Carboxymethylation is also not required for in vitro assembly

of PP2A-B0 holoenzymes, but B0 holoenzyme structures show

the carboxymethylated tail is situated in an area between the

A–B interface with several negatively charged residues,

suggesting a possible role of methylation in charge neutral-

ization (Cho & Xu, 2007; Xu et al., 2006). Although PP2Ac

carboxymethylation is not strictly required for holoenzyme

assembly in vitro, it is clearly required for proper in vivo

holoenzyme assembly (Lee & Pallas, 2007; Mumby, 2001).

PP2Ac methylation also fluctuates during the cell cycle,

indicating that regulation of PP2Ac methylation and holoen-

zyme assembly is required for cell cycle regulation (Janssens

et al., 2008; Yu et al., 2001).

Structural diversity of holoenzymes

Protein phosphatase 2A (PP2A) can act on a wide range of

substrates via its diverse holoenzymes, each containing a

distinct B subunit from four families: the B (PR55), B0

(PR56), B00 (PR72) and B- (Striatin) (Shi, 2009). Currently,

the identified regulatory subunits are encoded by 15 genes

which can be alternatively spliced to yield 26 different B

subunits (Eichhorn et al., 2009). A summary of subunit

nomenclature can be found in Table 1. These subunits share

sequence homology within each family, but have little-to-no

sequence homology between the families (Eichhorn et al.,

2009). No specific ‘‘recognition motif’’ has been identified

for PP2A substrates, and the recognition is likely due to

structural elements inherent to each subunit. The structure of

the core dimer of PP2A revealed important insights on how

holoenzyme assembly and activity are regulated (Xing et al.,

2006). The core of PP2Ac contains two central b-sheets

flanked by a-helices, with the loops connecting to the

b-sheets forming the active site, and the active site loops

harbor six conserved residues that chelate catalytic metal ions.

The active site loops are highly dynamic (Guo et al., 2014;

Jiang et al., 2013). As such, all holoenzyme (and core

enzyme) structures solved to date required potent inhibitors

such as microcystin LR (MCLR) or okadaic acid (OA) to

stabilize the active site for crystallization (Wlodarchak et al.,

2013; Xing et al., 2006; Xu et al., 2006,2008,2009).

The A-subunit consists of 15 Huntington-elongation-A-

subunit-TOR (HEAT) repeats arranged in a horseshoe shape.

PP2Ac binds to the ridge region of repeats 10–15 and the

regulatory subunits bind to the ridge of the N-terminal

repeats. The A-subunit can undergo a large degree of

conformational changes, explaining how so many structurally

diverse B subunits can form active holoenzymes with the

same A-C dimer (Wlodarchak et al., 2013). The B0g1

holoenzyme was the first holoenzyme structure solved (Xu

et al., 2006). Similar to the A-subunit, the B0g1 subunit is also

a HEAT repeat protein. The structure of the Ba holoenzyme

demonstrated a much wider conformation for the A-subunit

than the B0 holoenzyme, with little interaction between the B

and C subunits (Xu et al., 2008). The Ba subunit is a 7-bladed

b-propeller with a hairpin that extends to interact with the

side face of the N-terminal HEAT repeats of the A-subunit

(Xu et al., 2008). Recently, the high-resolution structure of a

B00 holoenzyme associated with PR70 and two structures of

B00 family subunits in isolation were finally solved

(Dovega et al., 2014; Wlodarchak et al., 2013). These

structures show that the B00 subunits are distinct from other

families and consist of a multi-domain arrangement with two

prominent calcium binding EF hands and a hydrophobic

interacting motif. One of the EF hands directly contacts the

top ridge of the scaffold subunit and is important for A–B00

binding (Dovega et al., 2014; Wlodarchak et al., 2013). The

N-terminal hydrophobic motif binds to the N-terminal side

surface of the A-subunit while the C-terminal domain

interacts with PP2Ac. These tripartite contacts between AC

and PR70 force the A-subunit into a tight conformation, and

this is required for enhanced substrate-specific dephosphor-

ylation (Wlodarchak et al., 2013). These observations suggest

that precise orientation of substrates is dependent on subtle

structural features and compact conformation of the holoen-

zymes derived from large conformational changes in the

Table 1. A summary of PP2A subunit nomenclature.

PP2A subunit family Protein name/isoform Other names

A Aa PR65a
Ab PR65b

B/PR55 Ba B55a/PR55a
Bb1 B55b1/PR55b1
Bb2 B55b2/PR55b2
Bg B55g/PR55g
Bd B55d/PR55d

B0/PR61 Ba B56a/PR61a
Bb B56b/PR61b

B0g1 B56g1/PR61g1
B0g2 B56g2/PR61g2
B0g3 B56g3/PR61g3
B0d B56d1/PR61d
B0e B56e/PR61e

B00/PR72 B00a PR130
B00a PR72
B00b PR70
B00g G5PR

B00 0/Striatin B- Striatin
C Ca PP2Aca

Cb PP2Acb

There is a variety of abbreviations used for protein subunits in the PP2A
field. Many regulatory subunits have splicing variants, such as Bb and
B0g. Note that not all of them are shown. Table adapted from Van
Kanegan & Strack (2009).
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A-subunit. Future structural and functional studies are

required to illuminate these mechanisms in more detail.

Given the diversity of holoenzyme structures, it is no

surprise that PP2A has been suggested or confirmed to

dephosphorylate over 300 substrates (Table 2). Most of these

substrates are involved in cell cycle regulation, and although

some of PP2A-mediated dephosphorylation cause positive

regulation of proliferation pathways, the majority of

PP2A-mediated dephosphorylation events play a negative

regulatory role. PP2A is implicated in a wide array of human

diseases due to its prominent function in the cell cycle and

many other essential cellular processes.

The cell cycle initiation: signaling pathways

The initiation of the cell cycle is controlled by many diverse

and complex signaling pathways. There is a large and

incredibly detailed body of information on each of these

signaling pathways elsewhere. Presented here is a brief review

on three critical signaling pathways, Wnt, mTOR and MAPK,

with a focus on the role of PP2A in their regulation.

Wnt signaling pathway

The Wnt pathway is involved in the regulation of cell

proliferation and polarity as well as embryonic development.

It facilitates the initiation of the cell cycle by activating the

transcription of critical promoters of cell division such as

cyclin D1 and c-Myc (He et al., 1998; Rimerman et al., 2000).

In the absence of Wnt signaling (Figure 3A), the protein

b-catenin is degraded by the action of a complex composed of

axin, adenomatous polyposis coli (APC), glycogen synthase

kinase 3b (GSK3b) and casein kinase 1 (CK1) [reviewed in

Clevers & Nusse (2012) and MacDonald et al. (2009)].

GSK3b and CK1 phosphorylate b-catenin, targeting it for

ubiquitination and proteasomal degradation (Amit et al.,

2002; van Noort et al., 2002). APC and axin have unique

domains that bind to CK1 and GSK3b to serve as scaffolds to

increase b-catenin phosphorylation, and these scaffolds are

often found mutated in cancers (Dajani et al., 2003; Kinzler

et al., 1991; Nishisho et al., 1991). Wnt signaling (Figure 3B)

is activated when extracellular Wnt binds to the receptor

frizzled and co-receptor LRP 5/6. An intracellular complex is

then formed with the receptors disheveled, axin, CK1 and

GSK3b, which then prevents the phosphorylation and subse-

quent degradation of b-catenin (Julius et al., 2000). b-Catenin

can then accumulate in the nucleus and bind to TCF family

transcription factors and activate Wnt responsive genes

(Behrens et al., 1996). These include critical promoters of

cell division such as cyclin D1 and c-Myc (He et al., 1998;

Rimerman et al., 2000).

b-Catenin is the central substrate in Wnt signaling, and its

regulation is highly dependent on phosphorylation and

dephosphorylation. The phosphorylation events are sequen-

tial, with CK1 phosphorylating S45 followed by GSK3b
phosphorylating T41, S37 and S33 (Amit et al., 2002; van

Noort et al., 2002). Phosphorylation at S37 and S33 allows

the ubiquitin ligase b-transducin repeat containing protein

(b-TRCP) to bind b-catenin and target it for degradation

(Latres et al., 1999). In addition to phosphorylating b-catenin,

CK1 and GSK3b can phosphorylate APC and axin which

increases the affinity of b-catenin for these scaffolds

(Ferrarese et al., 2007; Ha et al., 2004; Jho et al., 1999).

These phosphorylation events are disrupted when the complex

is perturbed by Wnt signaling. b-catenin, APC and axin can

be dephosphorylated by phosphatases such as PP2A and PP1,

and this event can also increase b-catenin levels. PP1

increases b-catenin levels by dephosphorylating axin which

reduces its affinity for GSK3b (Luo et al., 2007). Unlike PP1,

PP2A has a dual and opposing role in b-catenin regulation

(Figure 3). The PP2A-Ba holoenzyme has been shown to

directly interact with and dephosphorylate b-catenin to

enhance Wnt signaling (Zhang et al., 2009). In addition to

dephosphorylating the residues relevant to destruction, this

holoenzyme can also dephosphorylate residues S552 and

S675, the functionality of which has yet to be elucidated

(Zhang et al., 2009). The B55a holoenzyme can also directly

bind axin, likely through a different domain than the one that

PP2Ac can bind (Zhang et al., 2009). In contrast, the PP2A

B0a holoenzyme has been implicated in negative regulation of

Wnt signaling (Figure 3). B0a can bind to the destruction

complex through APC. Overexpression of B0a results in

decreased b-catenin levels and the amino terminus of

b-catenin being required for this effect (Seeling et al.,

1999). In addition to b-catenin regulation, PP2A negatively

regulates Wnt signaling through GSK3b both directly and

indirectly (Figure 3). GSK3b is inhibited by phosphorylation

on S9 by AKT (Leung-Hagesteijn et al., 2001). DNAJB6 with

Heat Shock Cognate 40 (HSC40) can recruit PP2A to GSK3b
where it can directly dephosphorylate S9 and activate GSK3b
(Mitra et al., 2012), which targets more b-catenin for

destruction (Kumar et al., 2012). PP2A also inhibits Protein

Kinase B (AKT or PKB) (Kumar et al., 2012), which

indirectly activates GSK3b by downregulating phosphoryl-

ation on S9. This pathway also provides an important

intersection with the mTOR pathway, another critical cell

cycle initiating pathway.

Mechanistic target of rapamycin (mTOR)

The mTOR pathway is involved in many diverse cellular

processes. It is stimulated by amino acids, cellular metabol-

ism, and growth factors, and results in increased growth,

metabolism and biomolecule synthesis (Laplante & Sabatini,

2012). These are crucial for accumulating enough cellular

components required for cell division. Due to the multifaceted

role of mTOR in cell regulation, it is an intensely studied

pathway with major implications in cancer, heart disease and

even some neurological diseases such as autism (Chen et al.,

2014; Fruman & Rommel, 2014; Laplante & Sabatini, 2012;

Sciarretta et al., 2014;). Rapamycin was known to have

toxic effects on yeast, and the responsible genes

(DDR1&2/TOR1&2) were discovered in 1993, with the

protein being discovered 1 year later (Brown et al., 1994;

Cafferkey et al., 1993; Kunz et al., 1993). Two complexes are

formed with the mTOR catalytic protein: mTORC1 and

mTORC2 (Shimobayashi & Hall, 2014). Both complexes

contain some shared as well as some unique components. The

shared components are the tti1 and tel2 scaffolds, deptor and

mLST8 (Shimobayashi & Hall, 2014). mTORC1 contains the

unique proteins raptor and pras40, whereas mTORC2 contains

DOI: 10.3109/10409238.2016.1143913 PP2A as a master regulator of the cell cycle 165
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Table 2. PP2A-interacting proteins identified by literature and database searches. Reviews, Pubmed and Biogrid (Chatr-Aryamontri et al., 2015) results
are presented.

Interacting proteins B subunit PhosphoSite Interaction boundary References

ADCY8 – – – (Crossthwaite et al., 2006)
ADRA1A – – – (Krueger et al., 1997)
AKAP9 PR130 – – (Takahashi et al., 1999)
AKT Ba T308 – (Kuo et al., 2008)
APC B0, B- bCatenin, - 302–625, 188–774 (Breitman et al., 2008; Galea et al., 2001)
AP1M1 Ba T156 – (Ricotta et al., 2008)
APP B0g, B0e – – (Olah et al., 2011)
AR – – – (Yang et al., 2007)
ARL2 Ba – – (Shern et al., 2003)
ATM – S1981 2427–2841 (Goodarzi et al., 2004)
ATR – – – (Kim et al., 1999)
ATXN7L2 PR72 – – (Lim et al., 2006)
AURKA – S51 46–56 (Horn et al., 2007)
AXIN1 B0a – 595–726 (Arnold et al., 2009; Yamamoto et al., 2001)
BANF1-ANKLE4 Ba – 59–938 (Asencio et al., 2012)
ARRB2 – – – (Beaulieu et al., 2005)
BAX – S184 – (Xin & Deng, 2006)
BAZ B0 S1085 – (Krahn et al., 2009)
BCL2 B0g T69, S70, S87 – (Lin et al., 2006), (Ruvolo et al., 2008)
BEST1 – – – (Marmorstein et al., 2002)
BLNK Bg – – (Oellerich et al., 2011)
BRCA1 B0g – – (Woods et al., 2012)
BUBR1 B0 – 630–720 (Xu et al., 2013)
CACNA1C Ba, Bb, PR70 S1928 1927–2029 (Hall et al., 2006)
CACNA1S Ba – – (Kristensen et al., 2012)
CAPN1 – – – (Hall et al., 2006)
CAMK4 – – – (Westphal et al., 1998)
CAMK2B – T253 – (Hoffmann et al., 2005)
CPD – – – (Varlamov et al., 2001)
CAS – – – (Yokoyama & Miller, 2001)
CASP3 – – – (Alvarado-Kristensson & Andersson, 2005)
CBX1 – – – (Nozawa et al., 2010)
CCNG1 B0a – – (Okamoto et al., 1996,2002)
CCNG2 B0b, B0g – – (Bennin et al., 2002)
CCT2 Bg – – (Glatter et al., 2009)
CDCA2 (repoman) B0a S893 586–595 (Qian et al., 2013)
CDC25 B0 T138 – (Lammer et al., 1998; Margolis et al., 2003,2006a,b)
CDC6 PR70 S54/S74 49–90 (Davis et al., 2008; Petersen et al., 1999;

Wlodarchak et al., 2013)
CDH1 (e-cadherin) – – – (Gotz et al., 2000)
CDK16 Ba – – (Varjosalo et al., 2013a)
CDK 4 – – – (Sablina et al., 2007)
CDK5R1 B0d – – (Louis et al., 2011)
CDK9 – – – (Ammosova et al., 2005)
CFTR – – – (Vastiau et al., 2005)
CHEK1 – S317 & S345 – (Leung-Pineda et al., 2006)
CIP2A – – – (Junttila et al., 2007)
CFL1 – – – (Samstag & Nebl, 2003)
GJA1 – – – (Kanemitsu et al., 1998; Meilleur et al., 2007)
CSNK1E – – – (Varjosalo et al., 2013b)
CTLA4 B0a – 151–159 (Baroja et al., 2002)
CTNNB1 (b-Catenin) B0, Ba S33, S37, T41, S45, S552, S675 APC, Mult. (Seeling et al., 1999; Zhang et al., 2009)
CUL3 B0b – 315–374 (Bennett et al., 2010; Oberg et al., 2012)
CXCR2 – – – (Fan et al., 2001)
DARPP32 PR72 T75 – (Ahn et al., 2007b)
DLG4 B0d – – (Arbuckle et al., 2010)
DNML1/DRP1 Bb2 S656 – (Merrill et al., 2013)
E4orf3 [adenovirus] – – – (Shtrichman et al., 1999)
EGFR PR130, B0e – – (Foerster et al., 2013; Zwaenepoel et al., 2010)
EIF1AK2 B0a – – (Xu & Williams, 2000)
EIF4EBP1 Ba – – (Bishop et al., 2006)
ELAVL1 B0e – – (Abdelmohsen et al., 2009)
ERAL1 – S18 – (Keen et al., 2005)
ETF1 – – – (Lechward et al., 1999)
ERK1/ERK2 B0b, B0g T202/T185 IEK-1 (Letourneux et al., 2006)
ESPL1 (separase) B0a-e – 1419–1474 (Holland et al., 2007)
FAM107A Ba – – (Ewing et al., 2007)
FBXO43 – – 319–375 (Wu et al., 2007)

(continued )
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Interacting proteins B subunit PhosphoSite Interaction boundary References

FMRP – – – (Narayanan et al., 2007)
GNA12 – – – (Zhu et al., 2004)
GNB2L1 – – 138–317 (Kiely et al., 2006)
GRIA1 – – – (Mao et al., 2005)
GRB2 Ba – – (Bisson et al., 2011)
GRIN2A – – – (Chan & Sucher, 2001)
GRK5 Ba – – (Wu et al., 2012)
GSK3B B0d S9 – (Liu & Eisenman, 2012)
H2AX – – – (Chowdhury et al., 2005)
HAND1 B0d – 150–216 (Firulli et al., 2003)
HAND2 B0d – – (Firulli et al., 2003)
HCP6 B – – (Yeong et al., 2003)
HDAC4 Ba S298 1–289 (Paroni et al., 2008)
HDAC5 Ba – – (Greco et al., 2011; Joshi et al., 2013)
HDM2 CyG S166 400–489 (Okamoto et al., 2002)
HOX11 – – – (Kawabe et al., 1997)
HRX – – – (Adler et al., 1997)
HSF2 – – – (Xing et al., 2007)
HTR1A – – – (Bauman et al., 2000)
IER3 – – – (Letourneux et al., 2006)
IKBKB – S77 &S181 121–179 (Kray et al., 2005; Li et al., 2006)
IKBKG – S68 – (Fu et al., 2003; Palkowitsch et al., 2008)
IL6ST – S782 – (Mitsuhashi et al., 2005)
IQGAP1 – – – (Takahashi & Suzuki, 2006)
IRAK1 – – – (Dobierzewska et al., 2011)
JAK2 – – – (Fuhrer & Yang, 1996)
JNK – – – (Shanley et al., 2001)
KCNQ2 B0g – E12–14 (Borsotto et al., 2007)
KRT8 – – – (Tao et al., 2006)
KRT18 – – – (Tao et al., 2006)
KSR1 Ba S392 249–320 (Ory et al., 2003)
LATS2 Ba – – (Woods et al., 2012)
LNX1 – – – (Guo et al., 2012)
MAPK14 – – – (Alvarado-Kristensson & Andersson, 2005)
MASTL (greatwall) Ba T194 – (Hegarat et al., 2014)
MDM2 B0a/CyG T216 100–280, 400–489 (Okamoto et al., 2002)
MEK3 a4 T193 – (Prickett & Brautigan, 2007)
MEKK3 Ba, Bd S526 – (Fritz et al., 2006)
MET – S985 – (Hashigasako et al., 2004)
MID1 – – – (Short et al., 2002)
MKK4 – – – (Avdi et al., 2002)
MLH1 Bb&Bd – – (Cannavo et al., 2007)
MTOR Ba – – (Peterson et al., 1999)
MYC (cMYC) B0a S62 40–179 (Arnold & Sears, 2006)
NDRG1 Ba – – (Tu et al., 2007)
NEK1 B0a S109 1–267 (Surpili et al., 2003)
NHE3 B0d – 651–839 (Bobulescu et al., 2010)
NKCC1 – – – (Liedtke et al., 2005)
NKD1 PR72 – – (Creyghton et al., 2005,2006)
NM23H2 – – – (Chen et al., 2008)
NOD2 B0e – – (Nimmo et al., 2011)
NOTCH1 Ba – – (Yatim et al., 2012)
NR3A – – – (Ma & Sucher, 2004)
NRF1 B0g – – (Satoh et al., 2013)
NTRK1 B0b & B0d – – (Van Kanegan & Strack, 2009)
OCLN – – – (Seth et al., 2007)
OSBP – – – (Wang et al., 2005)
PACS1 – S278 – (Scott et al., 2003)
PAK1 – – – (Westphal et al., 1999)
PAK3 – – – (Westphal et al., 1999)
PDE4D/AKAP1 B0d – 2083–2319 (Dodge-Kafka et al., 2010)
PER3 – – – (Sathyanarayanan et al., 2004)
PIM1 B0b – 70–139 (Ma et al., 2007)
PIN1 B0b – – (Huang et al., 2001; Michniewicz et al., 2007)
PKR B0a B0a B0a (Xu & Williams, 2000)
POLA2 – – – (Dehde et al., 2001)
PPFIA1 B0d – – (Rual et al., 2005)
PRKAR1A – – – (Ahn et al., 2007a)
PTPN14 – – – (Wang et al., 2012)
PTTG1 (Securin) – – – (Gil-Bernabe et al., 2006)

(continued )
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rictor, mSin1 and protor1/2 (Laplante & Sabatini, 2012;

Shimobayashi & Hall, 2014). Deptor is an inhibitor of both

mTOR complexes and suppresses the function of S6 kinase 1

(S6K1), AKT and Serum and Glucocorticoid regulated kinase

1 (SGK1) (Peterson et al., 2009). Deptor is highly over-

expressed in some multiple myelomas, and this overexpres-

sion can induce AKT function due to loss of feedback

inhibition of phosphoinositide-3 kinase (PI3K) from

mTORC1 (Peterson et al., 2009). Raptor and rictor help

regulate substrate specificity to mTORC1 and mTORC2,

respectively. Raptor binds with mTOR in the mTORC1

complex and is necessary for binding and phosphorylation of

S6K1 and 4E-BP1, which in turn induce protein synthesis and

proliferation (Kim et al., 2002; Nojima et al., 2003). GbL

(also known as mLST8) is found in both mTORC2 and

mTORC1 and is essential in stabilizing the interaction of

mTOR with raptor (Kim et al., 2003; Laplante & Sabatini,

2012).

Table 2. Continued

Interacting proteins B subunit PhosphoSite Interaction boundary References

PXN (paxillin) B0g1/2 – – (Ito et al., 2000)
RAF1 Ba/d S259 – (Adams et al., 2005)
RALA Ab S183, S184 – (Sablina et al., 2007)
RB1 PR70 T826 792–928 (Lees et al., 1991; Magenta et al., 2008)
RBL1 (p107) PR59 Mult. – (Voorhoeve et al., 1999)
REC8 B0-sgo Mult. – (Ishiguro et al., 2010)
RELA A S536 1–155, 354–551 (Fuhrer & Yang, 1996; Li et al., 2006;

Yang et al., 2001)
REV1 Ba& Bd – – (Naji et al., 2012)
RHEB – – – (Lee et al., 2007)
RHOB – – – (Lee et al., 2007)
RPS6KB1 – – – (Westphal et al., 1999)
RRAS – – – (Lee et al., 2007)
RRN3 Ba S44 – (Mayer et al., 2004)
RSA1 & RSA2 – – – (Schlaitz et al., 2007)
RUNX2 – – – (Rajgopal et al., 2007)
SET – – – (Li et al., 1996)
SG2NA – – – (Moreno et al., 2000)
SHC – Y317 – (Ugi et al., 2002)
SLC6A2 – – – (Sung et al., 2005)
SMAD3 – – 1–232 (Heikkinen et al., 2010)
SMAD9 B0e – – (Colland et al., 2004)
SMURF1 Bd – – (Xie et al., 2013)
SOX2 B0g – – (Cox et al., 2013)
SP1 – T739 – (Chuang et al., 2012)
SPHK1 B0a S225 451–470 (Pitman et al., 2011)
SPRY1 A S112, S115 50–60 (Lao et al., 2007)
SRC Bg S12 – (Eichhorn et al., 2007)
STAT5 – – – (Yokoyama et al., 2001)
STE20 – – – (Liedtke et al., 2005)
STK24 B- T178, T182 – (Gordon et al., 2011)
SUMO1 – – – (Grant, 2010)
TAU Ba Mult. 197–259, 265–328 (Xu et al., 2008)
TAX – – – (Fu et al., 2003)
TBC1D3 B0g S6K – (Wainszelbaum et al., 2012)
TCEAL1 Ba & Bd – – (Sowa et al., 2009)
TGFBR1 Ba – – (Griswold-Prenner et al., 1998)
TH B0b S19, S31, S40 R37 & R38 (Saraf et al., 2010)
TIP – – – (McConnell et al., 2007)
TOM22 Bb – – (Dagda et al., 2005)
TOP1 Bb – – (Trzcinska et al., 2002)
TP53 (p53) –, B0g1/3 S37, T55 – (Dohoney et al., 2004; Li et al., 2007)
TRAF2 B0g T117 272–501 (Li et al., 2006)
TSC2 – – – (Lee et al., 2007)
TTP – – – (Sun et al., 2007)
UBD – – – (Aichem et al., 2012)
UBR5 Bg – – (Chen et al., 2013)
UPF1 – – – (Ohnishi et al., 2003)
VIM Ba – – (Turowski et al., 1999)
VPU [HIV] B0e – – (Jager et al., 2012)
ZRANB1 B- – – (Tran et al., 2013)

The first row is the abbreviated interacting protein, the second is B subunit if known, the third is dephosphorylation site if known, the fourth is
interacting boundary if known and the last row indicates the reference to the work documenting the interaction. Abbreviations were used based on
Biogrid entries using Uniprot naming rules. Historical/common names are given in parenthesis where standard abbreviations are not commonly used
or not easily interpretable. All proteins mentioned are human, with the exception of important human viral proteins, which have virus names indicated
in [brackets].
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Both complexes are regulated by highly diverse processes.

Wnt signaling can activate both mTOR complexes, as can

stimulation by insulin (Inoki et al., 2006; Shimobayashi &

Hall, 2014). Wnt can stimulate mTORC2 directly through the

GTPase RAC1 and stimulates mTORC1 indirectly by

inactivating glycogen synthase kinase 3b, which is necessary

to activate an mTORC1 inhibitor, tuberous sclerosis complex

2 (TSC2) (Inoki et al., 2006; Shimobayashi & Hall, 2014).

Insulin, long known to stimulate protein synthesis, activates

mTOR through a central molecule, phosphatydilinositol-

3,4,5-triphosphate, produced by PI3K (Hsu et al., 2011;

Shimobayashi & Hall, 2014). This molecule can directly

stimulate mTORC2 and can indirectly stimulate mTORC1 by

activation of AKT which inhibits TSC2 (Klippel et al., 1997;

Shimobayashi & Hall, 2014). Free amino acids activate

mTORC1 via binding to RAS-related GTP binding protein

(RAG) heterodimers, causing a global conformational change

(Sancak et al., 2008). The RAG complex associated with

amino acids can recruit mTORC1 to the lysosome where it is

activated by binding to RAS homolog enriched in brain

(RHEB) (Sancak et al., 2008; Shimobayashi & Hall, 2014).

Although the mTOR regulation pathways are well

established, the downstream substrates of mTOR are not

very well characterized. Mass spectrometric studies have

identified 93 potential substrates in human embryonic

kidney cells and 174 potential substrates in mouse embry-

onic fibroblasts (Hsu et al., 2011). Very few of these

substrates have been studied in detail. The best known

substrates of mTOR are the ribosomal S6 kinase (S6K) and

eIF4e binding protein 1 (4E-BP) (Shimobayashi & Hall,

Figure 3. PP2A positively and negatively
regulates the Wnt signaling pathway. (A) Wnt
OFF. In the absence of Wnt signaling, a
complex of Axin, Apc, GSK3b and CK1
phosphorylate b-catenin, targeting it for
proteasomal degradation. PP2A-B0a pro-
motes b-catenin degradation by removing an
inhibitory phosphorylation on GSK3b.
PP2A-Ba can directly dephosphorylate
b-catenin, promoting the activation of wnt
responsive genes. (B) Wnt signaling ON. In
the presence of Wnt ligand, Wnt receptors
LRP5/6 and frizzled sequester the Axin,
GSK3b and CK1, preventing the phosphor-
ylation of b-catenin. b-Catenin accumulates
and translocates to the nucleus, promoting the
transcription of Wnt responsive genes. Figure
adapted from MacDonald et al. (2009). (see
colour version of this figure at www.infor-
mahealthcare.com/bmg).
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2014). Many proteins that are involved in growth and

proliferation are encoded by mRNAs that have secondary

structures in their 50-UTR (untranslated region) that inhibit

scanning by the 40S ribosomal subunit [reviewed in Ma &

Blenis (2009)]. Phosphorylation of 4E-BP by mTORC1 can

inhibit its binding to eIF4E, which is necessary to recruit the

pre-initiation complex (Burnett et al., 1998; Ma & Blenis,

2009). An important component of the pre-initiation com-

plex is eIF4B, which upon phosphorylation recruits eIF4A, a

family of RNA helicases that facilitate efficient unwinding

of secondary mRNA structures. eIF4B phosphorylation is

mediated by S6K after phosphorylation and activation by

mTORC1 (Burnett et al., 1998; Ma & Blenis, 2009). These

mTOR substrates both work in concert to translate these

structured mRNAs to enhance growth and proliferation.

mTOR regulates autophagy by the phosphorylation of Unc

51-like kinase 1 (ULK1). Autophagy is promoted by ULK1

when activated by phosphorylation on S317 and S777 by

AMP activated protein kinase (AMPK) (Kim et al., 2011).

mTOR phosphorylates ULK1 on S757, which prevents

AMPK phosphorylation and subsequent activation (Kim

et al., 2011). Recently, LIPIN1, a protein that helps promote

lipid biosynthesis, was identified as a potential mTOR

substrate, but more work is needed to further characterize

this substrate (Yuan et al., 2012).

There is evidence that PP2A can associate and depho-

sphorylate S6K, and the same report indicated that mTOR can

inactivate PP2A, providing two modes of S6K activation

(Peterson et al., 1999) (Figure 4). PP2A has also been shown

to affect mTOR activity by regulating AKT. AKT, which

inhibits TSC2, requires phosphorylation on T308 and S473

for activation, and the PP2A B0a holoenzyme has been shown

to dephosphorylate AKT on T308, thereby inactivating it

(Kuo et al., 2008) (Figure 4). Upstream of AKT, driven by

insulin signaling, is insulin receptor substrate 1 (IRS1) which

is necessary to transduce insulin receptor signaling to PI3K

(Carlson et al., 2004). PP2A can dephosphorylate IRS1,

leading to its stabilization and mTOR can inhibit PP2A

activity toward IRS1 potentially directly phosphorylating

IRS1 at S307, leading to IRS1 degradation (Carlson et al.,

2004; Hartley & Cooper, 2002) (Figure 4).

Multiple reports have indicated that mTOR can negatively

regulate PP2A activity, and most of this negative regulation

supports mTOR activation through insulin signaling and

PI3K. In contrast, PP2A can negatively regulate mTOR when

amino acids are not present. MAP4K3 can signal to activate

mTOR when amino acids are present, and autophosphoryla-

tion on S170 is necessary for this activation (Yan et al., 2010).

When amino acids are withdrawn, PP2A dephosphorylates

S170 and prevents mTOR activation by this pathway (Yan

et al., 2010) (Figure 4).

The role of PP2A in mTOR activation is further regulated

by its regulatory proteins. TIPRL can overcome amino acid

withdrawal and stimulate mTOR activation by inhibiting

PP2A phosphatase activity. However, the yeast homolog,

TIP41, has a negative effect on mTOR activation by binding

to TAP42 (Nakashima et al., 2013). In contrast to observa-

tions in yeast, the association between PP2Ac and a4, the

mammalian homolog of TAP42, is not dependent on mTOR,

indicating that the functions of TIPRL and a4 in mTOR

signaling are not conserved and remain to be deciphered (Yoo

et al., 2008).

The mTOR pathway is a critical pathway to initiate cell

growth, and the regulation of this pathway is exceedingly

complex, involving many feedback loops and antagonistic

partnerships, especially with PP2A. mTOR has been intensely

investigated and is frequently targeted for potential treatment

of diseases such as cancer. Nevertheless, there are still

important gaps in our understanding of mTOR substrates,

regulation and crosstalk with other signaling pathways.

Further study will deepen our understanding of

growth signaling and possibly lead to significant drug

development.

Mitogen activated protein kinase signaling pathway

Mitogen-activated protein (MAP) kinase pathways help

regulate many cellular functions such as proliferation, differ-

entiation and apoptosis. There are four families of MAP

kinases: ERK1/2, ERK5, JNK and p38 [reviewed in Hommes

et al. (2003), Imajo et al. (2006), McCubrey et al. (2007),

Meloche & Pouyssegur (2007)]. When activated, MAP

kinases phosphorylate downstream substrates to induce

cellular responses. MAPKs are activated by upstream kinases

(MAPK kinases), and those MAPKKs are activated by further

upstream kinases, MAPKK kinases (MAPKKKs) (Imajo

et al., 2006). These kinases are activated by cellular growth

signals, cytokines or stress signals. ERK5, JNK and p38

generally have pro-apoptotic functions and are activated by

stresses, whereas ERK1/2 promotes proliferation and trans-

formation (Imajo et al., 2006; Meloche & Pouyssegur, 2007;

Wu, 2007). The ERK1/2 pathway was the first MAPK

pathway discovered and is the best studied. Growth factors

such as epidermal growth factor (EGF) or fibroblast growth

factor (FGF) bind to their respective receptors and recruit a

complex of SRC homology-2-containing protein (SHC),

growth factor receptor bound protein 2 (GRB2) and son of

sevenless (SOS) (Egan et al., 1993) (Figure 5). This complex

changes Ras conformation, disrupting GDP interaction and

promoting GTP association which activates Ras and recruits

Raf (MAPKKK) to the membrane bound complex (Freedman

et al., 2006; Milburn et al., 1990), where Raf is activated by

dimerization and phosphorylation (Rajakulendran et al.,

2009). Raf then phosphorylates and activates MEK1, which

subsequently phosphorylates and activates ERK1/2 (Crews

et al., 1992; Wu et al., 1996) (Figure 5). ERK1/2 phosphor-

ylates transcription factors Jun and Fos which can then

translocate to the nucleus and bind DNA to initiate transcrip-

tion of genes involved in cell cycle regulation such as AP-1,

which in turn can promote cyclin D1 expression (Monje et al.,

2005; Weber et al., 1997). ERK1/2 can also phosphorylate

and stabilize c-Myc, which can then enhance its transcrip-

tional activity toward cell cycle promoting genes such as

cyclin D1 and CDC25A (Mathiasen et al., 2012; Meloche &

Pouyssegur, 2007).

The ERK1/2 MAPK pathway and its downstream sub-

strates are also regulated by the action of phosphatases. There

are at least 11 MAPK phosphatases (MKPs), which are split

into three families based on cellular localization. There is

significant cross-activity between the MKPs and all four of
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the MAPK pathways, and many of the MKPs, such as MKP-1

and MKP-3, have an overall transforming effect and are

implicated in many cancers [reviewed in Wu (2007)]. MKP-1

has been the best studied of the MKPs, and is implicated in a

variety of cancers. One of the mechanisms implicated in

maintaining cell survival is its ability to prevent stress-

induced apoptosis by preferentially dephosphorylating p38

and JNK, inactivating two critical stress-induced apoptotic

pathways in the cell (Franklin & Kraft, 1997; Franklin et al.,

1998).

Protein phosphatase 2A (PP2A) appears to have a role

primarily in negative regulation of the ERK MAPK pathway

(Figure 5). SHC is an important member of the complex that

binds growth receptors and activates Ras (Egan et al., 1993).

PP2A can bind to the phospho-tyrosine binding domain of

SHC and negatively regulate Ras activation (Ugi et al., 2002).

After growth factor stimulation, T317 phosphorylation of

SHC can dissociate PP2A and allow downstream activation

(Ugi et al., 2002). It is currently unknown whether PP2A

actively dephosphorylates SHC or which regulatory subunit is

responsible for PP2A’s inhibitory effect (Ugi et al., 2002).

PP2A can also directly inactivate ERK by dephosphorylation

(Letourneux et al., 2006) (Figure 5). This is mediated by the

B0b and B0g subunits, which can also be phosphorylated by

ERK if IEX-1 is expressed, thus reversing PP2A mediated

inactivation (Letourneux et al., 2006). Sprouty2 is an inhibitor

of FGF stimulated ERK activation. Sprouty2 is normally

phosphorylated and cannot bind Grb2, and phosphorylation

on T55 allows c-Cbl to bind and target sprouty2 for

degradation by the proteasome (Lao et al., 2007). Upon

FGF stimulation, sprouty2 is dephosphorylated by PP2A,

which exposes the Grb2 binding motif on the C-terminus (Lao

et al., 2007) (Figure 5). When bound to Grb2, ras is unable to

be recruited to the complex and be activated, thus down-

regulating ERK activation by FGF (Egan et al., 1993). PP2A

binds to sprouty2 between residues 50–60, competing with

c-Cbl binding and thus activating and protecting sprouty2

(Lao et al., 2007).

Figure 4. PP2A negatively regulates the
mTOR signaling pathway. The mTOR com-
plexes are colored blue. Proteins involved in
mTOR inhibition and activation are colored
red and green, respectively with PP2A in
purple. Downstream factors inhibiting and
stimulating growth are colored magenta and
teal, respectively. Growth factors stimulate
the mTOR pathway via inhibiting the func-
tion of the TSC complex that inhibits mTOR
activation. Wnt signaling can inhibit the TSC
complex or directly stimulate mTORC2.
Amino acids can also stimulate mTOR
activity. PP2A inhibits the mTOR pathway by
inhibiting IRS1 in the insulin signaling
pathway or MAP4K3 in the amino acid
pathway, or by inhibiting AKT function.
PP2A can also reverse mTOR phosphoryl-
ation of S6K. Figure adapted from
Shimobayshi & Hall (2014). (see colour
version of this figure at www.informahealth-
care.com/bmg).
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PP2A can also positively regulate ERK MAPK signaling.

EGF receptors are targeted for ubiquitination and degradation

by c-Cbl, which requires phosphorylation on various residues

(McCubrey et al., 2007). This interaction is disrupted upon

recruitment of SRC homology 2 domain containing inositol

polyphosphate phosphatase, SHIP2 (Zwaenepoel et al., 2010).

PR130, a PP2A regulatory subunit from the B00 family, forms

a holoenzyme which can form a complex with SHIP2 and is

required for SHIP2-mediated stabilization of EGFR

(Zwaenepoel et al., 2010). Mapping studies indicate that the

catalytic domain of SHIP2 interacts with the EF hands of

PR130, and mutation in this region disrupts the stabilizing

effect of PR130 holoenzyme on EGFR (Zwaenepoel et al.,

2010). It is currently unknown whether catalytic activity is

required for this effect and whether PP2A-PR130 depho-

sphorylates EGFR, SHIP2 or other associated targets.

Downstream of growth factor receptor, the kinase suppressor

of ras (KSR1) is a critical positive regulator of ras signaling

(Ory et al., 2003). It is a necessary scaffold to transduce the

activation signal from ras-1 to MEK to ERK. PP2A-Ba
holoenzyme is associated with the KSR1 complex and is

required for MEK activation (Ory et al., 2003). When

phosphorylated, S392 of KSR1 associates with 14–3-3 protein

and remains cytoplasmic. PP2A-Ba directly dephosphorylates

KSR1 at S392 which is then freed from 14–3-3 and can

translocate to the membrane, an event required for MEK

activation (Ory et al., 2003) (Figure 5). Similarly, PP2A and

PP1 have been shown to positively regulate Raf-1 activity by

dephosphorylating S259, allowing 14–3-3 release from Raf-1

and membrane translocation (Jaumot & Hancock, 2001)

(Figure 5). PP2A-B0b and -B0d can also positively regulate

MAPK signaling in neuronal PC12 cells through action on

TrkA. PP2A enhances autophosphorylation of TrkA likely by

dephosphorylating an inhibitory Ser/Thr, allowing Ras acti-

vation by TrkA and sustained MAPK signaling (Van Kanegan

& Strack, 2009).

Taken together, the role of PP2A in regulation of MAPK

pathway is complex and other as-yet-unidentified regulatory

proteins may be involved. Signaling scaffolding proteins, such

as KSR1, are crucial for coordinating spatiotemporal control

of the function of kinases, phosphatases and other signaling

molecules. The role of PP2A in both positive and negative

regulation of MAPK are likely crucial for fine-tuning and

precise control of this pathway. There is also crosstalk with

many of these pathways as well as other cell cycle promoting

pathways, highlighting the importance of phosphatases in

Figure 5. PP2A positively and negatively
regulates the MAPK signaling pathway.
Growth factors stimulate a complex of pro-
teins: SHC, GRB2 and SOS to assemble on a
growth factor receptor. This complex acti-
vates Ras which starts a signal cascade from
activation of Raf, to activation of MEK, ERK
and eventually the transcription factors that
activate the transcription of growth related
genes. PP2A can activate Raf by depho-
sphorylating S259 and causing 14–3-3
release. PP2A-Ba dephosphorylates S392 of
KSR1, which leads to dissociation of 14–3-3
from KSR1, essential for MEK1 activation.
PP2A negatively regulates MAPK upstream
by activating Sprouty2, which inhibits GRB2
and subsequent RAS complex formation.
PP2A-B0b/B0g can directly dephosphorylate
ERK1/2 downstream of the signaling cas-
cade, thereby inactivating it. Factors pro-
moting cell division are shown in green and
those opposing cell division are shown in red.
Figure adapted from McCubrey et al. (2007).
(see colour version of this figure at www.in-
formahealthcare.com/bmg).
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regulating the initiation of the cell cycle and the complexity

by which they do so.

Cell cycle progression: Rb and the G1-S transition

In G1 phase, cell cycle initiation pathways, such as those

mentioned above, initiate growth and transcription of factors,

such as cyclin D1, that control cell cycle progression. Before

the cell can transition from G1 to synthesis (S) phase, it must

pass through a critical cell checkpoint to ensure that the cell is

ready for DNA synthesis. The master regulator of this

checkpoint, and first discovered tumor suppressor protein, is

the retinoblastoma tumor suppressor protein (Rb).

Rb phosphorylation

Retinoblastoma tumor suppressor protein (Rb) is an approxi-

mately 105 kDa protein consisting of three functional

domains: an N-terminal structured region, a two-part central

pocket region and a C-terminal unstructured region (Harbour

& Dean, 2000). There are two other proteins structurally and

functionally related to Rb: p107 and p130. Together, these

proteins make up the pocket protein family and have all been

implicated in diverse cellular processes such as cell cycle

progression, apoptosis, senescence, differentiation, and angio-

genesis [reviewed in Indovina et al. (2013)]. These proteins

bind and inactivate E2F transcription factors, with Rb binding

E2F 1–3, and p107/p130 binding E2F4 & 5 (Figure 6)

(Indovina et al., 2013; Kolupaeva & Janssens, 2013). E2F 1–3

are transcriptional activators and mostly express cell cycle

genes such as cyclins E and A, and CDC25 [reviewed in

Harbour & Dean (2000), Indovina et al. (2013), Nevins

(2001)]. E2F4 & 5 are transcriptional repressors and are

involved in maintaining genomic stability and redundant

functions with Rb [reviewed in Dominguez-Brauer et al.

(2010) and Plesca et al. (2007)]. The pocket proteins bind to

E2F transcription factors along with their dimerization

partners (DPs), preventing their translocation to the nucleus

and transcriptional activation (Rubin, 2013). The pocket

proteins are phosphorylated by cyclin/CDK holoenzymes on

numerous residues, weakening the interaction between them

and the E2Fs, causing dissociation and E2F transcriptional

activation [reviewed in Kolupaeva & Janssens (2013) and

Rubin (2013)] (Figure 6). Rb is phosphorylated by cyclin D/

CDK4 and cyclin E/CDK2 in G1, and numerous phosphor-

ylation events gradually lead to the release of E2F transcrip-

tion factors (Brown et al., 1999). One possible mechanism for

this gradual release is due to the association of E2F with

multiple domains of Rb (Rubin et al., 2005). The pocket

domain alone is not sufficient for E2F dimerization, as the C-

terminal region of Rb adopts a stable conformation upon

association with E2F1-DP and increases the binding of the

complex more than 36 fold (Rubin et al., 2005). Loss of this

interaction pre-disposes Rb-E2F to dissociate, and this region

is phosphorylated by cyclin D/CDK4/6 early in G1, thus

providing a model for how sequential phosphorylation events

dissociate Rb-E2F (Rubin et al., 2005). Rb levels do not

change throughout the cell cycle, indicating that phosphoryl-

ation events need to be reversed to reset Rb after cell division

(Kolupaeva & Janssens, 2013).

Phosphatases in Rb regulation

The specific roles of kinases in Rb phosphorylation have been

well established; however, the role of phosphatases in Rb

regulation continues to be discovered. Protein phosphatase 1

and PP2A are the primary phosphatases that regulate Rb (and

p107/130) function (Kolupaeva & Janssens, 2013). PP1 is

responsible for complete dephosphorylation of Rb after

mitosis, whereas PP2A functions throughout the cell cycle,

dephosphorylating Rb and p107/130 in response to various

stimuli [reviewed in Kolupaeva & Janssens (2013) and

Kurimchak & Grana (2012)].

Protein phosphatase 1 (PP1) and PP2A are both known to

dephosphorylate Rb, and PP1 appears to compete for the same

CDK docking sites (Alberts et al., 1993; Hirschi et al., 2010).

Such competitive interaction has also been suggested between

CDKs and PP2A for p107 (Kolupaeva et al., 2013), and when

CDKs are elevated they outcompete phosphatases causing an

irreversible cell cycle progression signal switch. CDKs com-

pete with phosphatases and switch the signal toward hyperpho-

sphorylation and irreversible progression of the cell cycle

(Garriga et al., 2004). In support of the competition hypothesis,

specific overexpression of Ba induces p107 dephosphorylation

(Jayadeva et al., 2010). Ba can directly associate with p107 but

Figure 6. Rb phosphorylation promotes tran-
scription of E2F responsive genes. Rb nor-
mally binds E2F transcription factors and
their dimerization partners. When phos-
phorylated by cyclin/CDK heterodimers, Rb
loses affinity for E2F and free E2F is allowed
to promote transcription. Rb is depho-
sphorylated at the end of mitosis, allowing re-
association with E2F. Normally, PP1 depho-
sphorylates Rb at the end of mitosis, but
PP2A-PR70 can dephosphorylate Rb under
oxidative stress conditions. (see colour ver-
sion of this figure at www.informahealthcar-
e.com/bmg).
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has little affinity for pRb, therefore, additional holoenzymes

may be required to mediate cell cycle arrest by pocket protein

activation (Jayadeva et al., 2010).

In contrast to constitutive competitive interactions, extra-

cellular signaling or stress factors can induce PP2A-modulated

dephosphorylation of the pocket proteins with no significant

changes in CDK activity or PP2A expression (Cicchillitti et al.,

2003). Sustained FGF signaling can arrest cell growth in

chondrocytes, which is the opposite to the effect in most other

cell types (Kolupaeva et al., 2013). FGF signaling leads to Ba
dephosphorylation, increasing Ba affinity for p107, and

chondrocytes have a large constitutively expressed Ba popu-

lation (Kolupaeva et al., 2013). Phosphorylation of Ba allows

increased association of PP2A-Ba holoenzymes with p107 and

subsequent dephosphorylation and cell cycle arrest (Kolupaeva

et al., 2013). The extracellular factor all-trans-retinoic acid

(ATRA) appears to induce PP2A-specific dephosphorylation

of p130 (Purev et al., 2011). Upon ATRA treatment, PP2A can

bind to and dephosphorylate p130, protecting it from

ubiquitination and degradation (Purev et al., 2011). PP2A

can also mediate p130’s translocation to the nucleus due to

dephosphorylation of S1080 and T1097, exposing the NLS and

allowing binding by importins a and b (Purev et al., 2011;

Soprano et al., 2006). Under oxidative stress conditions, the

PP2A-PR70 holoenzyme can dephosphorylate Rb, and this

activity is dependent on Ca2+ stimulation (Magenta et al.,

2008) (Figure 6). One potential underlying mechanism is that

oxidative stress induces an influx of Ca2+, which stimulates

PR70 holoenzyme formation and results in specific Rb

dephosphorylation by PP2A-PR70, although further investi-

gation is needed.

The regulation of pocket proteins by dephosphorylation is

complex and results from the interplay between competition

with CDKs and specific mitogenic or stress stimuli. There

may also be crosstalk between various signaling pathways in

this process, as pocket proteins are central effectors through

which many pathways funnel. S phase induction by Rb

represents a commitment by the cell to DNA synthesis and

phosphatases continue to be important in regulating this

process.

DNA synthesis and regulation of the origin
recognition complex

Once the cell passes the G1-S checkpoint, it is committed to

the process of synthesizing DNA. The genome in eukaryotes

is far too large for synthesis to proceed in a linear fashion

from one end to another, so synthesis proceeds from discrete

origins of replication. In yeast, these origins are defined by

specific DNA sequences; however, human origins are likely

defined by DNA structural features [reviewed in Hyrien et al.

(2013)]. Excluding DNA recognition, the origin recognition

complex functions in a conserved manner and is highly

regulated.

ORC assembly and regulation

The origin recognition complex (ORC) is a large protein

complex that binds to DNA at the origins of synthesis and

recruits all of the proteins required to unzip and polymerize

DNA [reviewed in Bell (2002) and Duncker et al. (2009)].

There are and ORC proteins (ORC1–6) that bind to DNA at

the origins [referred to as autonomously replicating sequences

(ARS) in yeast] (Duncker et al., 2009). These proteins all bind

and hydrolyze ATP, and ATPase activity is required for their

assembly and recruitment of other complex members (Bell &

Stillman, 1992). In late G1/early S, cell division control 6

protein (Cdc6) binds to the ORC proteins and is the critical

component for further ORC assembly (Liang et al., 1995).

Cdc6 facilitates the loading of Cdt1 and ORC6 to ORC1–5

which then facilitate the loading of the mini-chromosome

maintenance proteins (MCM2–7) (Nishitani et al., 2000).

Cdc6 also has ATPase activity, and hydrolysis of ATP leads to

conformational changes, which increases the binding affinity

of the MCM proteins for the complex (Shin et al., 2003). The

MCM proteins are helicases, and when properly bound they

begin to unwind DNA for replication. The MCM proteins are

subsequently phosphorylated by Dbf4/Cdc7 which allows the

recruitment of RPA and Cdc45 to the unzipped origin,

facilitating the loading of DNA polymerase which then

synthesizes new DNA (Sheu & Stillman, 2006; Tanaka &

Nasmyth, 1998).

Regulation of Cdc6 by phosphorylation

For error free cell division, DNA must be synthesized once

and only once. One of the chief ways the cell regulates this

process is by allowing the origins to fire only once. This

restriction is accomplished by the tight regulation of Cdc6.

In the absence of phosphorylation near its N-terminal

destruction motifs, the anaphase-promoting complex/cyclo-

some (APC/C) targets Cdc6 for ubiquitination and proteaso-

mal degradation (Mailand & Diffley, 2005). In G1, Cdc6 is

phosphorylated by cyclin E/CDK2 on S54 and S74, protect-

ing it from degradation and allowing it to be transported into

the nucleus and to bind to the ORC (Jallepalli et al., 1997;

Mailand & Diffley, 2005) (Figure 7). After origin firing in

early S phase, Cdc6 is acetylated by general control non-

derepressible 5 (GCN5) and phosphorylated by cyclin A/

CDK2 on S106 (Paolinelli et al., 2009; Petersen et al., 1999).

These modifications tag Cdc6 for nuclear export where it is

degraded in the cytoplasm. Cdc6 degradation can only

happen when the protective residues are dephosphorylated,

and PP2A-PR70 has been shown to dephosphorylate Cdc6 in

vivo (Davis et al., 2008). Our recent study showed that Cdc6

is specifically dephosphorylated by PP2A-PR70 holoenzyme

and not others (Wlodarchak et al., 2013). PP2A-PR70 binds

Cdc6 near the phosphorylated residues, likely due to a

charge recognition pattern, and a compact holoenzyme

conformation is critical for optimal enzymatic activity

(Wlodarchak et al., 2013). The in vivo timing and location

of PP2A-PR70 dephosphorylation is not fully characterized,

but it likely occurs after origin firing to prevent re-assembly

and possibly before origin assembly to regulate synthesis

(Figure 7).

Mitosis: PP2A as a gatekeeper from mitotic entry to
mitotic exit

Inhibition of PP2A is required for mitotic entry

The transition from G2 to M phase is elicited by many factors

and pathways, but one of the most critical events is the
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activation of CDK1, which is concomitant with the inactiva-

tion of PP2A-B55 holoenzyme (Mochida et al., 2009). The

role of CDK1 was discovered over 40 years ago, but the

complex regulatory pathways in which it is involved continue

to be studied (Fisher et al., 2012). CDK1 is kept inactive by

phosphorylation of S14 and Y15 by Wee1 and Myt1 (Mueller

et al., 1995). During the G2!M transition, CDK1 is activated

by a group of dual-specificity phosphatases, Cdc25a, b and c

(herein collectively referred to as CDC25), which themselves

are subject to a complex regulatory network involving several

kinases and phosphatases (Lammer et al., 1998) [reviewed in

Johnson & Kornbluth (2012)]. Before mitotic entry, CDC25 is

phosphorylated on S216 by CaMKII and can also be

phosphorylated by Chk1 to arrest the cell cycle (Hutchins

et al., 2003). This allows 14–3-3 protein to associate with

CDC25 and prevent its nuclear translocation (Margolis et al.,

2006a). Chk1 also phosphorylates PP2A-B56d on S37 which

subsequently enhances its activity toward pT138 of CDC25,

keeping CDC25 inactive (Margolis et al., 2006a). At the end

of G2, CDK2-cyclin E phosphorylates CDC25 T138,

decreasing the affinity of 14–3-3 to CDC25 (Margolis

et al., 2006a). The decreased affinity allows gradual 14–3-3

dissociation, and the free 14–3-3 becomes bound in a

phospho-keratin sink (Margolis et al., 2006a). The re-exposed

S216 can then be dephosphorylated by PP1, preventing 14–3-

3 re-association (Margolis et al., 2003,2006b). The now active

CDC25 can dephosphorylate pT14 and pY15 of CDK2,

subsequently activating it (Gautier et al., 1991). Once CDK1

is active, it can phosphorylate CDC25 at S214, enhancing the

affinity of CDC25 for PP1 and causing activation of

additional CDK1, leading to rapid mitotic progression

(Margolis et al., 2006b) (Figure 8).

Protein phosphatase 2A (PP2A)-B55 holoenzyme provides

additional mechanism for the complex CDK1 regulation.

Before mitotic initiation, PP2A-B55 dephosphorylates Wee1

and Greatwall kinase, keeping both inactive (Harvey et al.,

2011; Hegarat et al., 2014). It can also dephosphorylate and

subsequently inactivate CDC25 at mitotic exit (Forester et al.,

2007; Johnson & Kornbluth, 2012). In addition, cyclin A-

CDK2 begins to phosphorylate Greatwall kinase at T194 and

activate it at the G2!M transition (Hegarat et al., 2014).

Greatwall phosphorylates ENSA that subsequently binds to

and inhibits PP2A-B55, preventing CDC25 repression

(Mochida et al., 2010). As more CDK1 is activated, a

positive feedback loop ensures PP2A-B55 inactivation. CDK1

also phosphorylates Greatwall and FCP1, keeping a majority

of ENSA phosphorylated and bound to PP2A-B55 (Hegarat

et al., 2014). Furthermore, CDK1 inactivates Wee1 and,

without the antagonistic effect of PP2A-B55, ensures its

activation (Watanabe et al., 2005). This complex network of

regulation and positive feedback loops serve to inactivate

PP2A while activating CDK1, rapidly driving entry into

mitosis.

PP2A in reorganization of cellular structures during
mitosis

Protein phosphatase 2A (PP2A) holoenzymes play a critical

role in regulating reorganization of cellular structures during

mitosis, including nuclear envelope breakdown, rearrange-

ment of intracellular organelles, such as the endo plasmic

reticulum and the Golgi apparatus, assembly of mitotic

chromosomes, assembly of the mitotic spindle and attachment

of cytoplasmic microtubules to kinetochores, which are

crucial for proper partitioning of cellular materials into

emerging daughter cells during cytokinesis. A significant

amount of knowledge on cellular reorganization during

mitosis had been reviewed (Wurzenberger & Gerlich, 2011).

Here, we primarily focus on the function of PP2A in these

critical processes.

Nuclear envelop breakdown and reassembly is

tightly coordinated with mitotic phosphorylation and

Figure 7. Cdc6 is necessary for assembly of
the pre-replication complex and subsequent
DNA synthesis. In G0, Cdc6 is ubiquinated
by the anaphase promoting complex/cyclo-
some (APC/C) and degraded by the prote-
asome. In G1, Cyclin E/CDK2
phosphorylates Cdc6 on S54 and S74, pro-
tecting it from degradation. Cdc6 is translo-
cated into the nucleus where it binds the
origin recognition complex and is required to
recruit Cdt1 and MCM2–7 and form the pre-
replication complex. After firing of the
origins, Cdc6 is methylated by GCN5 causing
its dissociation from the ORC. Cdc6 is then
phosphorylated on S106 by Cyclin A/CDK2
and translocated to the cytoplasm. PP2A-
PR70 is thought to dephosphorylate Cdc6
either at this point in G2 and/or in G1,
ensuring Cdc6 destruction and regulating
DNA synthesis. Figure adapted from Mumby
(2009). (see colour version of this figure at
www.informahealthcare.com/bmg).

DOI: 10.3109/10409238.2016.1143913 PP2A as a master regulator of the cell cycle 175

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

is
co

ns
in

 -
 M

ad
is

on
] 

at
 0

8:
44

 0
1 

Ju
ne

 2
01

6 



dephosphorylation (reviewed in Guttinger et al. (2009)).

Nuclear envelop breakdown was facilitated by CDK1-

dependent phosphorylation of lamin proteins and subsequent

disassembly of the nuclear lamina (Peter et al., 1990), and

phosphorylation of nucleoporins-mediated disassembly of

nuclear pore complexes (Laurell et al., 2011). PP2A (Schmitz

et al., 2010) and its closely related PP1 (Thompson et al.,

1997) play a role in nuclear envelope reassembly during

mitotic exit with unclear mechanisms. It remains to be

determined whether lamin and nucleoporins are the specific

substrates of PP2A. Disassembly and reassembly of the Golgi

apparatus is also driven by mitotic phosphorylation and

dephosphorylation. While phosphorylation of Golgi matrix

protein GM130 induces disassembly (Wei & Seemann, 2009),

PP2A-mediated dephosphorylation of GM130 induces Golgi

reassembly during mitotic exit, which involves PP2A-B55a
holoenzyme (Lowe et al., 2000; Schmitz et al., 2010).

Mitotic chromosomal assembly is regulated by condensin I

and condensin II, which belongs to a class of conserved

condensin complexes that play essential roles in mitotic

chromosome condensation by collaborating with other

chromosomal components (Hagstrom & Meyer, 2003;

Jessberger, 2002). PP2A interacts with condensin II and

plays an essential role in targeting condensin II to chromo-

somes (Takemoto et al., 2009). Intriguingly, this process does

not require the phosphatase activity of PP2A (Takemoto et al.,

2009). Chromatin decondensation requires PP1 and its

regulatory subunits Repo-Man (recruits PP1 onto mitotic

chromatin at anaphase protein) and PNUTS (phosphatase 1

nuclear targeting subunit) (Landsverk et al., 2005; Vagnarelli

et al., 2006). The role of PP2A in this process is less

characterized. Nonetheless, a recent study showed that a

midzone-associated Aurora B gradient monitors chromosome

position along the division axis and to prevent premature

chromosome decondensation by retaining Condensin I until

effective separation of sister chromatids is achieved (Afonso

et al., 2014). Both PP1 and PP2A phosphatases counteract

this gradient and promoted chromosome decondensation

(Afonso et al., 2014).

Proper kinetochore–microtubule attachments are tightly

controlled by Aurora B-mediated phosphorylation and

PP2A/PP1-mediated dephosphorylation. Aurora B phosphor-

ylates multiple substrates at the kinetochore to destabilize

and correct erroneous kinetochore–microtubule attachments

(Welburn et al., 2010). While PP1 is considered the major

phosphatase counteracting Aurora B (Carmena et al., 2012),

the PP2A-B56a holoenzyme also plays a critical role in

stabilizing kinetochore–microtubule attachments by coun-

teracting Aurora B phosphorylation (Foley et al., 2011).

Pseudokinase BUBR1 seems to play a critical role in

integration of kinase and phosphatase activities to ensure

proper formation of stable kinetochore–microtubule attach-

ments (Suijkerbuijk et al., 2012). Phosphorylation of a

conserved KARD domain n BUBR1 by PLK1 (polo-like

kinase 1) promotes direct interaction of BUBR1 with the

PP2A-B56a phosphatase (Suijkerbuijk et al., 2012), a

potential mechanism for the recruitment of PP2A-B56a to

the inner kinetochore prior to microtubule attachment

(Foley et al., 2011). Removal of BUBR1 from mitotic

cells or inhibition of PLK1 reduces PP2A-B56a kineto-

chore binding (Suijkerbuijk et al., 2012), suggesting that

PLK1 and BUBR1 cooperate to stabilize kinetochore–

microtubule interactions by regulating kinetochore localiza-

tion of the PP2A-B56a holoenzyme.

Figure 8. PP2A negatively regulates the cell
cycle through CDC25 and Wee1. In G2,
Greatwall, Fcp and Wee1 are dephosphory-
lated, keeping PP2A-B55 active and CDK1
inactive. CDC25 is phosphorylated at S216,
allowing 14–3-3 association, holding it inac-
tive. At the transition from G2 to M, CDC25
is phosphorylated at T138, weakening 14–3-3
binding and allowing dissociation with sub-
sequent binding to a phospho-keratin pool.
The now exposed S216 can be dephosphory-
lated by PP1 activating CDC25. Active
CDC25 dephosphorylates CDK1 at T14 and
Y15 thereby activating it. The active CDK1
can then phosphorylate several substrates
required for mitotic progression. In addition,
CDK1 participates in several positive feed-
back loops. It phosphorylates Wee1, pre-
venting direct inactivation, and it
phosphorylates CDC25 at S214, increasing
its affinity for PP1 and allowing for more
CDC25 activation. Furthermore, CDK1 can
prevent CDC25 inactivation by PP2A-B55 by
phosphorylating Greatwall, which in turn
phosphorylates ENSA, which binds to PP2A-
B55 and keeps it inactive. CDK1 also phos-
phorylates FCP1, preventing it from depho-
sphorylating ENSA and releasing PP2A-B55.
Figure adapted from Johnson & Kornbluth
(2012) and Hegarat et al. (2014). (see
colour version of this figure at www.
informahealthcare.com/bmg).
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PP2A in spindle checkpoint, regulation of
APC/C-CDC20 and mitotic exit

The rise in APC/C-CDC20 activity initiates mitotic exit by

targeting several mitotic determinants for degradation, result-

ing in the formation and separation of two interphase daughter

cells. APC/C is kept inactive by the spindle assembly

checkpoint until all chromosomes attach to microtubules

originating from opposite spindle poles [reviewed in

Musacchio & Salmon (2007)]. The early mitotic inhibitor 1

(Emi1) and 2 (Emi2) play a critical role in inhibition of

APC/C, and PP2A-B56 holoenzymes was found to promote

the inhibitory activity of Emi2 and maintain the spindle

assembly checkpoint, which was antagonized by the activity

of CDK1 (Tischer et al., 2012). CDK1-mediated phosphor-

ylation of APC/C inhibitory proteins primes its own inacti-

vation. At mitotic exit, APC/C-CDC20 induces proteasomal

destruction of cyclin B, and inactivates mitotic CDK1

(Sullivan & Morgan, 2007). Inactivation of CDK1 is expected

to lead to reactivation of PP2A-B55 to mediate depho-

sphorylation of CDK1 substrates at mitotic exit.

Adenomatous polyposis coli (APC)/C-CDC20 also medi-

ates the degradation of securin to initiate chromosome

segregation. Securin inhibits the protease separase; removal

of securin allows separase to cleave the sister chromatid

cohesion 1 (SCC1) subunit of the cohesin complex (Sullivan

& Morgan, 2007). Cohesin function is also regulated by PLK1

and PP2A. PLK1 promotes dissociation of cohesin from

chromosome arms by phosphorylating the cohesin subunit

SA2 during prometaphase (Sumara et al., 2002). Shugoshin 1

recruits PP2A–B56 to protect SA2 against PLK1-mediated

phosphorylation and thereby maintains a pool of persistent

cohesion, and prevents premature separation of sister chro-

matids (Kitajima et al., 2006; Tang et al., 2006; Tanno et al.,

2010; Xu et al., 2009).

With limited information on specific substrates targeted by

diverse PP2A holoenzymes, the above knowledge likely

merely represents a small fraction of PP2A function during

mitosis. More questions need to be addressed regarding how

PP2A holoenzyme activity is temporally and spatially

controlled for tight regulation of numerous events during

mitosis.

Concluding remarks

The cell cycle harbors complex and intricate processes and

may be the most studied aspect in biology. This highlights its

importance in understanding the origins of most of human

disease and what can be done to intervene for therapeutic

purposes. Great strides have been made in understanding

the complex players of the cell cycle, and the importance

of regulation by reversible phosphorylation cannot be

underestimated.

The role of PP2A in regulating the cell cycle is only

beginning to be investigated. It is involved in most major cell

cycle initiation pathways as well as in regulating major

checkpoints during cell cycle phase transitions. PP2A is

implicated in dephosphorylating many more cell cycle

pathway substrates than could be discussed here (Table 2),

further highlighting its importance to properly functioning

cells. The kinases involved in regulating the cell cycle

typically exert their action through transcription-level changes

and/or regulation of protein stability, whereas the cellular

level of PP2A scaffold and catalytic subunits are stable

throughout the cell cycle. Although PP2A expression differs

from that leading to ‘‘canonical’’ kinase regulation, PP2A is

one of the primary cell cycle regulating enzymes due to the

dynamic nature of its holoenzyme assembly, activation and

inhibition. As discussed, it is a major target in several key

pathways, both for protein activation and inactivation, and it

is frequently targeted for inhibition due to its antagonistic

effects in these pathways. Although kinases may have taken

center stage in the study of cell cycle regulation, the intricate

connectivity between these kinases and PP2A shows its

importance in the tight regulation of these processes.

In addition to its wide involvement in cellular processes,

PP2A is a complex group of enzymes, and its assembly and

activity are highly regulated making it challenging to study.

No PP2A-substrate binding consensus sequence has been

identified yet, indicating that structural and biochemical

information is required to understand the mechanisms by

which PP2A regulates substrate dephosphorylation. Currently,

high-throughput assays are being explored to identify sub-

strates and characterize protein–protein interactions signifi-

cantly faster than traditional methods. These large scale

assays combined with structural and biochemical character-

ization will provide an unprecedented amount of information

to the PP2A field and possibly identify new targets of cell

cycle regulation. These new targets may be incredibly useful

in developing drugs or biomarkers for preventing, diagnosing

or treating human disease, and more refined knowledge on

existing PP2A-substrate interactions may help improve cur-

rent treatments.
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