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Summary. The random collision hypothesis is a mathematical idealization of intestinal tumor formation
that can account for the polyclonal origin of tumors without requiring a mechanistic description of clonal
interaction. Using data from recent polyclonality studies in mice, we develop a statistical procedure to test
the random collision hypothesis. Elements from stochastic geometry and approximations due to Armitage
(1949, Biometrika 36, 257–266) support a statistical model of tumor count data. Bayesian analysis yields
the posterior distribution of the number of heterotypic tumors, from which p-values are computed to test
random collision.
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1. Background
Usually DNA is replicated without error during mitosis; how-
ever, mutations and other damage can occur that transform
a normal cell to an aberrant state. The intestinal epithelium
is one of the most proliferative tissues; ample opportunity ex-
ists for the damage of sufficient significance to initiate tumor
growth. A tumor has a monoclonal origin if its constituent
cells all trace by descent to a single ancestral cell that is aber-
rant relative to the normal tissue. Otherwise the tumor has
a polyclonal origin. In spite of considerable research, the dy-
namics of tumor initiation and early tumor growth in the
intestine have been difficult to measure and remain poorly
understood (Garcia et al., 1999; Shih et al., 2001; Preston
et al., 2003).

Studies in mice (Griffiths et al., 1989; Merritt, Gould, and
Dove, 1997; Thliveris et al., 2005) and humans (Novelli et al.,
1996, 2003) provide evidence for the polyclonal origin of at
least some intestinal tumors. The idea behind these lineage-
marker studies is that any intestinal cell assumes one of two
distinguishable marker types, and, further, that the type of a
cell is passed faithfully to its descendant cells (i.e., to its de-
rived clone). For example in studies by Merritt et al. (1997)
and Thliveris et al. (2005), each mouse was generated by fus-
ing an embryo carrying the ROSA26 transgene to an embryo
lacking this marker. The intestinal surface of each chimeric an-
imal was a patchwork of blue (ROSA+) and white (ROSA−)
cells. A polyclonal tumor forming on the border between blue
and white patches had the opportunity to be heterotypic; a
polyclonal tumor that originated in the center of a patch far
from cells of the other type would have been homotypic. In
binary lineage-marker studies, any heterotypic tumor is poly-
clonal, but a polyclonal tumor is not necessarily heterotypic.
Because it assumes one of only two types, a binary marker

is unable to fully resolve all the different clones that may be
present in a single tumor. In spite of this limitation and oth-
ers, clonality studies yield useful information on the origin of
intestinal tumors, providing definitive evidence that at least
some intestinal tumors have a polyclonal origin.

The biological mechanisms that generate polyclonality are
not well understood. Unlike the standard paradigm for mono-
clonal tumors (e.g., Nowell, 1976), the polyclonal tumor can-
not have a simple history in which a series of uncorrected
mutations accumulate in the cellular descendants of a single
aberrant cell. Some kind of interaction among distinct clones
may be required. For example, an initiated clone might emit
molecules that transform neighboring normal cells into neo-
plastic cells which then contribute to the tumor mass. Alter-
natively, initiated clones might be at a selective disadvantage
in the tissue unless they are in close proximity to other ini-
tiated clones. Various scenarios requiring the interaction of
initiated aberrant clones may explain polyclonality, but there
is an elementary possibility that does not require any form
of active interaction. It is random collision. Random collision
refers to the possibility that polyclonality is a consequence of
independent random initiation events, which, having occurred
by chance in sufficiently close proximity, result in a neoplasm
recognized as a single tumor. Though it is a mathematical
idealization, random collision serves as a useful null hypoth-
esis by which various tumor models can be gauged. None of
the evidence presented prior to Thliveris et al. (2005) could
clearly refute random collision as a parsimonious explanation
of polyclonal tumor formation, in part because the multiplic-
ity of intestinal tumors was too high.

Here we more fully develop the statistical test that was in-
troduced and used in Thliveris et al. (2005) to test the random
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Table 1
Data from Thliveris et al. and posterior inference: Tumor count columns indicate
the total number of tumors in the small intestine broken down according to tumor
phenotype. The last column indicates the conditional predictive p-value computed
under the random collision model predicting the number of heterotypic tumors,

and using collision distance δ = 1.5 mm.

Tumor count

Mouse ID Blue tissue (%) Total White Blue Heterotypic NA p-value

100 20 19 6 5 5 3 0.000
122 85 24 6 13 3 2 0.002
154 20 9 5 2 2 0 0.002
209 60 19 10 2 3 4 0.004
225 30 24 21 0 2 1 0.062
237 50 9 3 2 2 2 0.004
244 40 8 3 0 5 0 0.000

collision hypothesis. Data are available on tumor multiplici-
ties, sizes, and phenotypes (heterotypic/homotypic) from the
binary lineage-marker study of Thliveris et al. (2005), with tu-
mor multiplicity and phenotype data from the seven chimeric
mice being shown in Table 1. Briefly, both contributing em-
bryos in each of these chimeric mice carried a mutation in
the Apc gene, predisposing the animal to intestinal tumor
growth. Tumors were counted throughout the small intestine
after the animals were sacrificed just after 60 days of age.
Tumor phenotypes were examined histologically by multiple
pathologists to be confident that each assessment was accu-
rate. Tumors were relatively small. On average the maximum
diameter was 0.85 mm with standard deviation 0.5 mm; all
but one of the tumors had maximum diameter smaller than
2.0 mm. A striking feature of the data in Table 1 is the high
fraction of heterotypic tumors (22%) among those with an
unambiguous phenotype. Considering the low tumor multi-
plicity and the relatively small tumor sizes in these mice, one
expects collisions to be rare, and thus it is difficult to see
how random collision alone could account for so many overtly
polyclonal, heterotypic tumors.

The purpose of the present article is to formalize into a
statistical procedure the intuition that at low tumor multi-
plicity random collision should not yield a high number of
heterotypic tumors. It is a slightly difficult matter to estab-
lish a useful null distribution for the number of heterotypic
tumors, since it depends on unknown parameters, and re-
quires elements from stochastic geometry to characterize col-
lisions of random initiated cells on the two-dimensional in-
testinal surface. Section 2 presents distributional properties
of tumor counts under random collision. These form the basis
of a Bayesian analysis, described in Section 3, that gener-
ates a posterior predictive distribution for the number of het-
erotypic tumors by integrating over unknown parameters in
the null hypothesis. The test is applied to data from Thliveris
et al. (2005) and also data from Merritt et al. (1997) in
Section 4.

2. Random Collision Model
In a simple version of random collision, N initiated cells ap-
pear uniformly at random over the two-dimensional surface of

each mouse intestine prior to the time of observation. These
initiated cells are aberrant relative to normal cells in the tis-
sue; each such initiated cell is ancestral to a clone of descen-
dant cells, which, by the time of observation, either forms an
entire tumor or is one part of a polyclonal tumor. To analyze
the random collision model, we assume that the total surface
area is A square units, and that initiated cells within δ units
would collide in the sense that their descendant clones would
constitute a single polyclonal tumor. We take A = 2000mm2,
approximating the intestine at 400 mm in length and having
uniform circumference of 5 mm. Taking δ = 1.5 mm is a con-
servatively large estimate of the collision distance given the
rather small diameters of tumors in the study by Thliveris
et al. (2005).

The random placement of N initiated cells does not fully
constrain the number of collisions; we may have collisions of
two, three, or more initiated cells, or we may have no colli-
sions at all. In the random graph G having nodes equal to the
N initiated cells and having an edge between two nodes if the
corresponding clones collide, each connected component is a
distinct tumor. A random number x1 of the tumors are mono-
clonal, each being formed from a single, isolated initiated cell.
Similarly, x2 of the tumors are biclonal, being formed from a
pair of collided clones that are isolated from all others, and so
on for clonality counts xk , k ≥ 1. Counting initiated cells, N =
x1 + 2x2 + 3x3 + · · ·. Counting tumors, we have the total
tumor count in the mouse as t =

∑
k
xk. The probabilistic

structure of G and the clonality counts {xk} is induced by the
uniform random placement of initiated cells, but it represents
a nontrivial stochastic process whose properties depend on N,
A, and δ. With relatively small N and δ we expect very few
collisions, whereas with very large N or large δ we would ex-
pect to see one large polyclonal tumor comprising numerous
clones. Distribution theory is limited for the clonality counts
{xk}, though Poisson approximations can be derived using
the theory of random geometric graphs (Penrose, 2003). We
find quite useful an early result from Armitage (1949) that
was developed in a different problem to model the counting
of dust particles on a sampling plate.

Armitage derived approximations to first moments E(xk )
for k = 1, 2, 3. They are written in terms of ψ = πNδ2/(4A),
which, if we view each initiated cell as the center of a disk of
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Figure 1. Expected number of tumors as a function of N
for an intestinal surface of size A = 2000mm2 and a collision
distance of δ = 1.5mm, based on Armitage’s approximation.
The expected number of tumors is less than the number of
initiated cells because collision creates polyclonal tumors.

diameter δ, is the ratio of the total area of all N disks to the
total area of the intestine. The approximate means are

m1(N, δ) = N exp(−4ψ)

m2(N, δ) = 2N

(
ψ − 4π + 3

√
3

π
ψ2

)
m3(N, δ) = N

(
4(2π + 3

√
3)

3π
ψ2

)
.

(1)

For example, the expected number of monoclonal tumors is
N times the probability that a given initiated cell forms an
isolated tumor. But that requires the other N − 1 initiated
cells to be placed outside a disk of diameter 2δ centered on the
given cell, which occurs with probability (1 − πδ2/A)N−1, thus
leading to m1(N) above. Rather more delicate computations
are used to get m2(N) and m3(N). Using elements of stochas-
tic geometry, Armitage showed that |mk (N , δ) − E(xk )| =
O(Nψ3), and so the approximations would be useful for rela-
tively small N and small δ (see Figure 1).

3. Posterior Predictive Analysis
To develop an inference procedure using Armitage’s first-
moment formulas requires a sampling model on the tumor
count data. Theoretical developments might consider that
the initiated cells are located at points of a homogeneous
Poisson process (Hall, 1988; Penrose, 2003). In our sparse-
graph setting, this leads to approximate Poisson distribu-
tions for the clonality counts {xi

k}; the superscript i indicates
the animal, and, as before, k indicates the number of col-
lided clones. Tumor counts are well known to exhibit extra-
Poisson variation, however, and so we accommodate this by
introducing Gamma-distributed random effects (Newton and
Hastie, 2006). Animal i is assigned the random effect zi , which
has mean 1 and variance 1/α; conditionally, on zi and on a
population-level mean parameter μ, we suppose

[
xi
k

∣∣μ, zi, δ] ∼ Poisson{mk(μzi, δ)}. (2)

This formulation conveniently represents the unknown,
animal-specific N value (number of initiated cells) as an over-
all, population-level mean parameter μ adjusted by an animal-
specific multiplier zi . Alternative representations are possible,
but (2) captures the main sources of variation by accommo-
dating both polyclonality and the extra-Poisson variation of
tumor counts. In this conditional Poisson model, we do not ex-
plicitly generate tumors by colliding clones, however, diagnos-
tic calculations (see Section 4) suggest that the approximation
may be reasonable. Collisions of more than three clones are
not allowed in this model; such collisions seem to have very
low probability in the system we have analyzed (see Figure 1).
Accepting these approximations, the animal-specific tumor
totals ti have the distribution

[ti |μ, zi, δ] ∼ Poisson{m1(μzi, δ) + m2(μzi, δ) + m3(μzi, δ)}.
(3)

Tumor size data provide some information about the col-
lision distance δ, but it is rather indirect since any collisions
leading to the polyclonal origin of a tumor may have happened
much earlier than the time of observation. Our strategy is to
treat δ as known in subsequent computations, fixed at some
conservatively estimated value.

The first calculation uses Markov chain Monte Carlo
(MCMC) to obtain a posterior distribution for unknowns μ,
α, and {zi} given observed tumor totals {ti}. Then we take
the MCMC output and do a posterior predictive simulation
of the number of heterotypic tumors in each mouse. This pos-
terior predictive distribution is the natural reference distri-
bution for the observed number of heterotypic tumors, and
thus it generates conditional predictive p-values (Bayarri and
Berger, 1999).

With n animals, say, and tumor counts t1, . . . , tn , the pos-
terior distribution targeted by MCMC is

p(z1, . . . , zn, μ, α | t1, . . . , tn) ∝ p(μ)p(α)

×
n∏
i=1

{p(ti |μ, zi)p(zi |α)}.

Here p(zi |α) is the Gamma(α, α) random-effects distribution,
p(ti |μ, zi ) is the Poisson sampling model (3), p(μ) is a flat
prior, and p(α) is an Exponential prior with mean 10. Some
regulation of α is computationally helpful in our small sam-
ple size setting; also historical data provide some insight into
typical levels of overdispersion—hence our choice for p(α).
Ours is a routine implementation of the Metropolis–Hastings
algorithm (e.g., Robert and Casella, 2002); it involves sepa-
rate update steps for μ, α, and {zi}; proposals in each step
are sampled uniformly in windows centered at the current
values.

The posterior distribution described above is based on tu-
mor totals from all animals; information on how many tumors
are heterotypic is not used. Our strategy is to obtain a pre-
dictive distribution for the number hi of heterotypic tumors
in animal i, and then to compare the observed heterotypic
number to this distribution to obtain a conditional predictive
p-value. We simulate the predictive distribution for hi in three
steps:
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1. For each zi and μ from the posterior sample, we form a
trinomial probability vector

(p1, p2, p3) = {m1(μzi, δ),m2(μzi, δ),m3(μzi, δ)}/c,

where c normalizes the vector to sum to one.
2. We sample clonality counts (xi

1, xi
2, xi

3) as a trinomial
random vector based on ti total tumors. This step uses
the well-known fact that Poisson counts become multino-
mials when we condition on their total. To reduce Monte
Carlo error, we sample B2 trinomial vectors for each of
the B1 posterior draws.

3. We derive heterotypic counts from the clonality counts
by noting that a binomial number yi

2 of the xi
2 bi-

clonal tumors are heterotypic and a binomial num-
ber yi

3 of the xi
3 triclonal tumors are also heterotypic.

The total heterotypic count is hi = yi
2 + yi

3. Success
probabilities for these binomials refer to the mecha-
nism by which clones are assigned different types dur-
ing tumor growth. The patch structure of types within
tissue suggests positive association of the types of
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Figure 2. Posterior analysis based on B1 = 2000 states subsampled from chain of length 6 × 106: Panels A and B show the
marginal posterior distributions of μ and α. The Exponential prior is also drawn in panel B. Panel C shows boxplots of the
posterior samples of zi for different animals i. The prior mean of 1 unit is highlighted. The possibility for collisions is expressed
in panel D by relating the animal-specific total μz to the postcollision expected count E(t) = m1 + m2 + m3. Boxplots show
the probable values of μz for three animals.

clones bound in a polyclonal tumor, however, a con-
servative approximation is obtained by supposing that
clones are marked by independent and identically dis-
tributed Bernoulli trials (Newton, 2005). If pi is the
overall proportion of blue cells in the intestinal tis-
sue of animal i, then the success probability for yi

2 is
2pi (1 − pi ). Similarly, the success probability for yi

3 is
1 − p3

i − (1 − pi )
3.

4. Results and Discussion
Code to implement the inference calculations was developed
in the R system (R Development Core Team, 2004), and was
checked using several simulated data sets. We stored B1 =
2000 states of the posterior sampler after subsampling from
runs of length 6 × 106; output analysis indicated good mix-
ing in the cases considered. Simulation from the predictive
distribution of clonality counts used B2 = 1000 conditionally
multinomial draws for each of the B1 posterior states.

Marginal posterior distributions are presented in Figure 2
for the Thliveris et al. data. Panels A and B indicate
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that there is much more information in the tumor counts
concerning the overall mean number of initiated cells per
mouse than there is about the overdispersion parameter. This
finding is reasonable considering that we have only seven
chimeric mice. Animal-specific posterior distributions for ef-
fects zi reveal clear shifts from the Gamma prior in directions
consistent with the tumor totals for the different animals (see
Table 1). It is by virtue of the shared marginal distribution
on these effects that data from the different animals are use-
fully combined. Otherwise animal-specific numbers of initi-
ated cells would be unconnected and it would be difficult to
bound these totals. Panel D shows that there is very little op-
portunity for collision given the parameter ranges active for
these data. On the horizontal axis is μz, the animal-specific
expected total number of initiated cells; the vertical axis com-
pares this to the postcollision expected tumor total E(t) =
m1 + m2 + m3 as defined in model (3) and shown in Figure
1. Typically, these numbers differ by fewer than two initi-
ated cells, indicating the vast majority of the initiated cells
expected to have formed monoclonal tumors. The low rate
of polyclonal tumors translates into a prediction of very few
heterotypic tumors. Posterior predictive distributions for the
number of heterotypic tumors in four of the seven mice are
shown in Figure 3. Taken together with the relatively large
observed numbers of heterotypic tumors gives small condi-
tional predictive p-values, which are reported in Table 1 for
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Figure 3. Posterior predictive distributions: Shown are posterior predictive distributions for the heterotypic count in four
of the seven mice in the Thliveris et al. study conditional on tumor totals. Observed heterotypic counts h and p-values are
indicated. For instance, 19 tumors were observed in animal 209; 15 of them gave an unambiguous phenotype, and 3 of these
were heterotypic. Distributions are based on B2 = 1000 simulated heterotypic counts for each of B1 = 2000 posterior samples.

the full set of mice. The random collision hypothesis is not
a plausible explanation for the Thliveris et al. data. We ap-
plied the same procedure to tumor count data from Merritt et
al. (1997). The results are more equivocal in this case (Table
2). Note that the Thliveris et al. experiment used mice with
lower tumor multiplicity than those used in the 1997 study.
The rationale was that a reduction in tumor number would
permit a more rigorous assessment of the random collision
hypothesis.

Our computations rely on a Poisson approximation to the
numbers of monoclonal, biclonal, and triclonal tumors, con-
ditional on animal-specific random effects {zi} (equations (1)
and (2)). We checked the accuracy of this approximation by
simulating random initiated clones and then counting colli-
sions. More specifically, we simulated the posterior predictive
distribution for clonality counts in a hypothetical new mouse
from the Thliveris et al. population using B1 simulated val-
ues of the mean μ and the Gamma shape α drawn from their
posterior distribution (as in Figure 2). To do so we first sim-
ulated a Gamma-distributed random effect z for each (μ, α)
draw. Then we simulated N = �μz	 initiated clones uniformly
at random in a tubular intestinal region of length 400 mm
and of circumference 5 mm. Collisions were assessed accord-
ing to the spatial layout of these clones to yield the numbers
of monoclonal and biclonal tumors. In parallel, we simulated
Poisson-distributed monoclonal and biclonal counts using the
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Table 2
Data from Merritt et al. and posterior inference: Columns as

in Table 1

Tumor count
Mouse Blue
ID tissue (%) Total White Blue Heterotypic p-value

112 10 105 93 5 7 0.22
113 10 155 139 1 15 0.05

Armitage rates m1(μz, δ) and m2(μz, δ). Figure 4 compares
clonality counts derived by colliding initiated clones (left pan-
els) to counts obtained from the conditional Poisson model
(right panels). The conditional Poisson/Armitage model gives
a slightly more variable predictive distribution of monoclonal
counts, but there is no substantive difference between the
approximation and the actual collision counts overall. Thus
for the range of parameters describing the Thliveris et al.
chimeric mice, the Poisson approximation to random collision
is reasonable.
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Figure 4. Comparison of Poisson/Armitage model for clonality counts (right panels) and counts obtained by colliding
initiated clones (left panels). Both cases started with simulated values of N = �μz	 for the number of initiated cells. The right
side then used the conditional Poisson model to generate monoclonal counts (top) and biclonal counts (bottom). Alternatively,
the N initiated cells were placed uniformly at random in the intestine. The number of isolated monoclonal tumors (top) and
collided pairs (bottom) were counted.

Some further remarks:� Our definition of random collision entails uniform ran-
dom placement of initiated cells throughout the small in-
testine. Nonuniform, but still random, placement would
give more clustering and a higher heterotypic fraction;
thus collision itself has not been rejected, just a form of
completely random collision has been. Nonuniform initi-
ation might be due to a field effect (Garcia et al., 1999).
However, Thliveris et al. further considered the spatial
distribution of tumors and observed that heterotypic tu-
mors were relatively more frequent in regions of the small
intestine containing fewer tumors.� Our Bayesian approach casts the hypothesis test as a
goodness-of-fit test. To do otherwise would require that
we put forth some alternative hypothesis to random col-
lision, and then to compute the probability of data on
both the null and alternative hypotheses. Many alterna-
tives (nonuniform initiation, recruitment, cooperation)
would predict higher heterotypic fractions, but details
of their model specifications may be hard to establish.
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The present approach seems to be suitable for the prob-
lem at hand. Furthermore, the p-values computed are
conditional predictive rather than posterior predictive be-
cause the posterior distribution driving them is based
on part of the data (tumor totals) rather than all the
data (tumor totals and heterotypic totals). Bayarri and
Berger (1999) discuss benefits of conditional predictive
p-values.� A simple alternative hypothesis to random collision en-
tails uniform random initiation followed by selection if
initiated cells do not have enough tumorigenic potential.
Such potential could be defined in terms of proximity to
other initiated cells. An open statistical question is how
to derive the distribution of clonality counts of higher
orders under this sort of selection.
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