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On estimating the polyclonal fraction in

lineage-marker studies of tumor origin

Michael A. Newton

Summary

Insight into the biology of tumor formation is provided by studies which demonstrate

through the use of cell-lineage markers that some tumors have a polyclonal origin. Novelli

et al. 1996 proposed to use the proportion of heterotypic tumors among the tumors that are

either heterotypic or pure and of the minority marker type as a lower bound on the marginal

fraction of polyclonal tumors. Generally, Novelli’s ratio does not provide a valid lower bound

for the marginal polyclonal fraction, as we demonstrate by analyzing relevant conditional

probabilities. Estimation of the polyclonal fraction requires modeling assumptions on the

distribution of the number of involved clones. Using three elementary models, we develop

maximum likelihood estimation of the polyclonal fraction. We establish robustness of our

estimates to misspecification of the clone-marking process, though the estimates are sensitive

to assumptions about polyclonal mechanisms. On data from several published studies, our

estimates of the polyclonal fraction are substantially smaller than Novelli’s ratio.

Key words: cancer biology; conditional probability; Novelli’s ratio

1 Introduction

A tumor has a monoclonal origin if early in development its constituent cells descend from a

single ancestral cell that is aberrant relative to normal tissue. Otherwise it has a polyclonal

origin. Cellular events at the genesis of tumor growth are naturally difficult to measure;

clonality studies have provided significant insights, but questions persist about the frequency

and functional role of polyclonality. Many studies present evidence supporting the prevailing

view, which is that polyclonality is the exception rather than the rule in tumor formation

(e.g., Linder and Gartler 1967; Vogelstein et al. 1985; Fearon et al. 1987). Other studies
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suggest that polyclonality may have an important role, especially for certain intestinal tumors

(e.g., Buetler et al. 1967; Hsu et al. 1983; Novelli et al. 1996; Merritt et al. 1997; Thliveris

et al. 2005).

The premiss of clonality studies is that cells presenting different states of a binary lineage

marker belong to different clones. Thus, tumors presenting both states of the lineage marker

presumably have polyclonal origin. Due to X-chromosome inactivation early in development,

each tissue in a female who is heterozygous at a marker locus is a mosaic of cells presenting

one or the other variant of the marker. X-chromosome-inactivation markers have been

used in many clonality studies. A different marker was used in Novelli et al. (1996).

Intestinal tumors (microadenomas) had been measured in an unusual patient who not only

had inherited a defective tumor suppressor gene, making him susceptible to intestinal cancer,

but whose tissues were mosaic with respect to the presence of the Y chromosome. The

presence (XY) or absence (XO) of Y could be measured in cells, and this formed a binary

lineage marker. Aggregation chimeras enable lineage marking in recent clonality studies

using mouse models of intestinal cancer (Merritt et al. 1997; Thliveris et al. 2005). Briefly,

two early mouse embyros (morulae) are fused and ultimately produce a single mouse in which

the tissue is a mosaic of contributions from both embryos. One embryo is designed to carry

a certain reporter gene in order to easily evaluate the embryonic origin of a cell of interest

in the adult chimeric mouse.

In large part, evidence regarding the clonality of tumor origin has been inconclusive

owing to limitations of lineage marking and possible measurement errors. Fearon et al.

(1987) noted some problems in previously reported studies. For example, multiple clones

would appear to exist in a monoclonal tumor if normal epithelial or stromal cells happened to

contaminate the tumor sample; and in enzyme polymorphism studies the level of expression

would not necessarily be uniform among different clones. The Fearon et al. study applied

a DNA-based assay to 50 intestinal tumors. Every tumor presented a single state of the

binary marker, in support of monoclonality. Subsequent calculations, however, showed that

the Fearon et al. study had low power to detect polyclonality because a very small fraction

of the tissue was near patch boundaries in the X-inactivation mosaic (Novelli et al. 2003).
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Patch structure in the Novelli et al. (1996) (X0/XY) case was finer grained and thus provided

a greater opportunity to detect polyclonality. However in that study it was possible that

the Y chromosome could be lost sporadically; though the estimated rate was low, there

was a small chance that tumors presenting both marker variants were actually monoclonal.

Subsequent mouse chimera studies, on the other hand, did not suffer from problems with

marker fidelity and clearly demonstrated polyclonality. The background rate of adenoma

formation was relatively high in the Merritt et al. (1997) study. Thliveris et al. (2005)

used similar methods but engineered the mice to have many fewer tumors overall. In spite

of substantial challenges in measuring early events of tumor formation, there is now clear

evidence supporting the polyclonal origin of a class of intestinal tumors.

The mechanisms responsible for polyclonality are not well understood. Some polyclonal

tumors may emerge simply by the close proximity of distinct initiated clones without a

requirement for clonal cooperation. Tumor multiplicity was quite low in the Thliveris et al.

(2005) study of murine intestinal adenomas, and so this so-called random collision hypothesis

was considered unlikely. If polyclonality is necessary for certain tumors to grow, then there

are intercellular interactions of importance to the initiation and maintenance of the tumor.

The existence of such interactions would strain the standard model which holds that a tumor

develops according to a monoclonal cell lineage within which genetic damage accumulates

(e.g., Nowell 1976). As improved methods are applied to study the earliest events of tumor

growth, the precise role of polyclonality will be clarified. A pervasive statistical question

in this effort is how to estimate the fraction of polyclonal tumors from data obtained in

lineage-marker studies. This question is the focus of the present paper.

Regarding statistical concerns, there is the problem that the fraction of polyclonal tumors

may be different from the fraction of tumors that appear to have polyclonal origin according

to lineage marker data. Take the data from Novelli et al. (1996) as illustrative. The patient

presented with 263 microadenomas in his intestinal tract; 4 of these were pure (homotypic)

and of the minority XO type, 246 of these were homotypic and of the majority XY type, and

the remaining 13 were heterotypic in that they contained cells of both marker types. These

13 tumors were overtly polyclonal; assuming fidelity of the marker, none could have formed
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as cells descendant from a single initiated aberrant cell. Quite possibly, covertly polyclonal

tumors were among the 250 homotypic tumors, though the actual number of such polyclonal

tumors cannot be assessed because a binary lineage marker does not have the resolution to

distinguish different clones within a tumor that happen to have the same marker type. All

heterotypic tumors are polyclonal, but not all polyclonal tumors are heterotypic.

Recognizing the inherent missing-data structure, Novelli et al. (1996) proposed, as a

lower bound on the fraction of polyclonal tumors, the proportion of heterotypic tumors

among those that are either heterotypic or homotypic of the minority marker type. That

became 13/(13 + 4) = 76% for these data. It is a rather impressive inference, since we know

with confidence only that the polyclonal fraction exceeds the heterotypic fraction, estimated

at 13/263 = 5%. Merritt et al. (1997) used the same ratio technique to bound the polyclonal

fraction in tumor count data from mouse aggregation chimeras. The rates estimated by this

Novelli ratio technique have been reported in various reviews (e.g., Playford 1998; Garcia

et al. 1999). Through an analysis of conditional probabilities, we show that the Novelli

ratio technique is flawed. In doing so we identify two key stochastic components of lineage

marker data, and further show that model-free estimates of the polyclonal fraction cannot

improve the proportion of heterotypic tumors as a lower bound on the polyclonal fraction.

Model-based methods are developed, and we show that these are robust to certain forms

of model violation, but not to others. These findings have guided some of the statistical

calculations in Thliveris et al. (2005), and would seem to have relevance in future clonality

studies.

2 The inference problem

Of interest are tumors that originate within intestinal epithelial tissue, though none of

the statistical reasoning is restricted to this site. We suppose that cells in the tissue

can be classified as either normal or abnormal; for our purposes the detailed distinctions

among abnormal cells (e.g. adenomas/carcinomas) are not important, and we consider that

abnormal cells populate tumors. Classification of cells may be based on histopathology
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to detect abnormal cell morphology or immunohistochemistry to detect certain proteins

produced in tumor cells (e.g. Merritt et al. 1997). To study tumor origin, one needs

to consider initiation events, each of which irreversibly transforms a normal cell into an

abnormal state. We equate a tumor clone with the full set of extant cells that descend

from such an initiated cell via cell proliferation within the tumor. Cells comprising a tumor

either form a single clone or partition the tumor mass into multiple clones (owing to multiple

initiation events). Thus in the population of intestinal tumors under study, a fraction f(c)

of tumors are formed from exactly c clones, for c = 1, 2, . . .. This forms the probability

mass function of C, the number of clones in a randomly sampled tumor. Underlying f

is a stochastic process governing how clones are bound together to form tumors. Three

elementary, mechanistic models of this clone-binding process are presented in Section 4.

The sampled tumor is monoclonal if C = 1; otherwise it is polyclonal. The polyclonal

fraction

θ = P (C > 1) =
∞

∑

c=2

f(c) = 1 − f(1)

is the parameter of primary interest. Ideally we can consistently estimate θ from available

data. Because any evidence that θ > 0 is in conflict with the standard theory of monoclonal

tumor origin, an informative lower bound is useful in conjunction with any point estimate

of θ.

Lineage-marker studies provide partial information about the clonal structure of tumors

and thus enable inference about the polyclonal fraction θ. Each cell in the tissue assumes

one of a finite number of marker types which marks the cell and any descendant cells. All

studies to date have used two types, say {1, 2}, though more are biologically possible and

could be readily considered in our statistical analysis. Fidelity of the marker through cell

proliferation is essential, otherwise we cannot, from measurements on extant cells, conclude

much of anything about the type of ancestral cells that existed at the time of tumor initiation.

Auxiliary data may support the marker-fidelity hypothesis, and we adopt this hypothesis in

what follows.

For a tumor sampled from the population under study, let N(t) denote the number of
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clones of type t. Naturally C = N(1) +N(2) in the case involving binary types. The tumor

is homotypic of type t if N(t) = C. It is heterotypic if it is not homotypic for either type.

We can observe which of the three mutually exclusive events has occurred:

HOM1 = [N(1) = C] , HOM2 = [N(2) = C] , HET = [N(1) > 0] ∩ [N(2) > 0] .

Current measurements do not allow us to know C or N(t) for either t; they simply indicate

the value of a trinomial random variable for each tumor. Some sort of clone-marking process

characterizes the conditional distribution of N(t) given C = c. Possible models for the

clone-marking process are discussed in Section 5.

Lineage-marker studies of polyclonality offer two classifications of a tumor population:

(1) clonality, i.e. whether C = 1 or C > 1, and (2) phenotype, i.e. whether N(t) = C for

some t, or not. Table 1 shows the cross classification of such a population in terms of these

factors. Tumor count data provide direct information on the marginal row proportions, but

complete data are not available on entries inside the table. Assuming marker fidelity, no

tumors can be both heterotypic and monoclonal, and this forces a structural zero in the

table.

Table 1: Cross classification of a tumor population in terms of clonality and phenotype.

Clonality

Phenotype monoclonal [C = 1] polyclonal [C > 1]

homotypic
type 1 [HOM1] P (HOM1 ∩ (C = 1)) P (HOM1 ∩ (C > 1)) P (HOM1)

type 2 [HOM2] P (HOM2 ∩ (C = 1)) P (HOM2 ∩ (C > 1)) P (HOM2)

heterotypic [HET] 0 P (HET ∩ (C > 1)) P (HET)

P (C = 1) θ = P (C > 1) 100%

In summary, trinomial phenotype data are available from tumors sampled from a relevant

population. Stochastic processes governing the biology of clone binding and clone marking

affect the distribution of these data. There is substantial missing information, but also there

are structural constraints which relate parameters and guide inference about the polyclonal
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fraction θ.

3 No model-free lower bound improves P (HET)

Evidently P (HET) ≤ θ because all heterotypic tumors are polyclonal (Table 1). This

assertion relies on the marker-fidelity assumption, but it requires no assumptions on either

the process by which clones are bound into tumors or the process by which clones attain

marks. In this sense it is model free. Though valid, the bound P (HET) ≤ θ is not tight

when a substantial fraction of the homotypic tumors are also polyclonal.

First Novelli et al. (1996) and then Merritt et al. (1997) used a certain ratio aiming

to produce a tighter lower bound for θ. From a sample of tumors, Novelli’s ratio is the

proportion of heterotypic tumors among those that are either heterotypic or homotypic and

of the minority type. The empirical value is:

β̂ =
#{HET}

#{HET} + #{HOM1}
, (3.1)

where type t = 1 homotypic tumors are less frequent than type t = 2 homotypic tumors.

This estimates the population quantity

β = P (HET)/P (HET ∪ HOM1). (3.2)

A clear rationale for the claim that β ≤ θ was not provided in Novelli et al., but evidently

there was no appeal to particular modeling assumptions. The idea may have been simply

this: among the heterotypic and minority-homotypic tumors, the polyclonal fraction is

θ∗ = P (C > 1 |HET ∪ HOM1) (3.3)

=
P {HET ∩ (C > 1)} + P {HOM1 ∩ (C > 1)}

P (HET ∪ HOM1)

=
P (HET) + P {HOM1 ∩ (C > 1)}

P (HET ∪ HOM1)

= β + ε.

Here the development uses HET ⊂ (C > 1) as noted in Table 1. The term ε ≥ 0 is liable to

be small if the minority cell type is a small proportion of the whole, since multiple clones from
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that minority component have to somehow interact to form each tumor. Regardless of the

magnitude of ε, we have a valid bound β ≤ θ∗. Thus Novelli’s ratio β does bound a certain

polyclonal fraction, but it is not θ, the marginal polyclonal fraction of interest; rather β is a

lower bound on the rate θ∗ of polyclonality among the heterotypic and minority-homotypic

tumors. Were there some sort of conditional independence, it would follow that the bound

also holds marginally. This is not so. In fact, in the population of heterotypic and minority-

homotypic tumors, polyclonality is more frequent than in the whole population of tumors

(see theorem below). There is a positive gap between θ and the larger θ∗, which creates a

problem; for if β lies in this gap then it is not a lower bound for the marginal polyclonal

fraction θ (see Figure 1). Further, whether or not β lies in the gap depends on details of the

stochastic processes generating the data, and so β can not be a general purpose, model-free,

lower bound.

The gap affecting Novelli’s ratio is always non-negative. Some conditions are required to

establish strict positivity. For one, we require 0 < θ < 1. But this is innocuous; if θ = 1 then

any quoted rate would provide a valid lower bound for θ; on the other hand if θ = 0 then all

tumors would be homotypic and the question of polyclonality would not have surfaced in the

first place. We make no specific assumptions about clone binding or clone marking. However

we do require a weak technical assumption about the latter. Consider that in a population

of tumors comprised of monoclonal tumors and, for various c ≥ 2, tumors originating by the

interaction of c clones, we have an overall proportion γt of clones that are of type t. More

formally,

γt =

∑∞

c=1 f(c) [
∑c

n=1 nP {N(t) = n |C = c}]
∑∞

c=1 cf(c)
, (3.4)

which arises from consideration of size-biased sampling, as long as E(C) < ∞ (e.g., Patil

and Rao 1978). Probabilities P {N(t) = n |C = c} for various c and n reflect the possibly

complex clone-marking process.

Definition: The clone-marking process is regular if for each clonal type t, 0 < γt < 1, and

also if for each c ≥ 2 for which f(c) > 0, P {N(t) = c |C = c} < P {N(t) = 1 |C = 1} = γt .

Roughly speaking, regularity means that homotypic type t tumors are more frequent among
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monoclonal tumors than they are among polyclonal tumors. The assumption holds for a

range of plausible stochastic processes, such as those in which the marking is neutral and

thus independent, in a certain sense, from the clone-binding process. We take up the point

shortly. First we state the main theoretical result which is key to the flaw in Novelli’s ratio.

Gap theorem: If 0 < θ < 1 and the clone-marking process is regular, then θ < θ∗.

The value of lineage-marker studies derives in part from the possibility that the marking

process itself does not alter the polyclonal structure. This concept of neutrality is stronger

than the concept of regularity required in the gap theorem. To be specific, reconsider N(t),

the number of clones of type t that are bound together in a sampled tumor. One definition of

neutral marking is to have that the expected proportion of type t clones in clonality-c tumors

does not depend on c; i.e. E {N(t)/C |C = c} = γt. Owing to discreteness we cannot have

that N(t)/C is independent of C, but we can ask that on average the proportion of type t

clones in a tumor matches the proportion of type t clones overall. If the marking process

is neutral and allows heterotypic tumors, i.e. if P (HET|C = c) > 0 for all c > 1 for which

f(c) > 0, then from (3.4), it follows routinely that the marking process is also regular. Thus

neutrality implies regularity.

As an example of a non-regular marking process, suppose that tumors can be either

monoclonal (with probability f(1) = 1/2), or biclonal (with probability f(2) = 1/2).

Suppose further that all monoclonal tumors are marked with type 1, and all biclonal tumors

are marked with type 2. The phenotypes and the clonality are highly dependent in this case

and seem far from a neutral marking process. Overall among clones, γ2 = 2/3 are of type 2,

yet P {N(2) = 2|C = 2} = 1, P {N(2) = 1|C = 1} = 0, which clearly violates the definition

of a regular marking process.

An elementary, though useful, neutral marking process entails independent type

assignments according to distribution {γt} over types. Independence requires few

parameters, but it conflicts with the spatial patterning evident in real tissue that is a mosaic

of different types (Griffiths et al. 1989; Novelli et al. 2003; Thliveris et al. 2005). Neutral

marking can respect this sort of patterning through positive association by boosting the
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homotypic rate P {N(t) = c |C = c} above the independence homotypic rate γct .

Taking these concepts to a concrete example, consider a simplified model in which tumors

are monoclonal with probability f(1) = 1 − θ or are formed from two clones, and thus are

biclonal with probability f(2) = θ. Tumor-bound clones are marked independently by one

of two types, with the minority type t = 1 having frequency γ1 < 1/2. Evaluating (3.3), the

proportion of biclonal tumors among the heterotypic or pure type-1 tumors is

P (C > 1 |HET ∪ HOM1) =
2θγ1(1 − γ1) + θγ2

1

2θγ1(1 − γ1) + (1 − θ)γ1 + θγ2
1

>
2θγ1(1 − γ1)

2θγ1(1 − γ1) + (1 − θ)γ1 + θγ2
1

=
2θ(1 − γ1)

1 + θ(1 − γ1)

= β

As ensured by (3.3), Novelli’s ratio β does provide a lower bound for a certain conditional

polyclonal fraction. However there is a gap between that conditional fraction θ∗ and the

smaller marginal polyclonal fraction θ of interest, and so the bound β ≤ θ can fail. Figure 2

charts the difference ∆ = θ− β for different polyclonal fractions and different minority type

frequencies γ1. When both θ and γ1 are large, Novelli’s ratio provides a legitimate bound

because ∆ > 0. The bound fails when ∆ < 0. In terms of state-space area, the bound

fails for most scenarios. The error is particularly extreme in the realistic situation where the

minority fraction is small.

What statistical recourse is there for inference about θ? The weak lower bound

P (HET) ≤ θ is the best one can do without adopting modeling assumptions on clone binding

and marking. Mathematically, for example, it is possible that tumors are either monoclonal

or polyclonal of some large degree c, and are marked by some simple marking scheme. If this

were the case, virtually all the polyclonal tumors would be heterotypic, and so the simple

lower bound P (HET) ≤ θ would be tight.

Curiously, there is a modification of the Novelli ratio which provides a valid lower bound

for θ in the special monoclonal/biclonal model, though not generally. Peter Sasieni (personal

communication) proposed to replace the denominator in Novelli’s ratio (3.1) with the number
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of tumors that are heterotypic plus twice the number of minority homotypic tumors.

4 Model-based inference is sensitive to clone-binding

assumptions

Three elementary models of clone binding are:

1. Monoclonal/Biclonal: As in Section 3, polyclonality is equivalent to biclonality.

This is the simplest form of polyclonality. One justification is parsimony; the model is

a minimal representation of interacting clones.

2. Conditional Poisson: The number C of clones in a tumor has probability mass

function

f(c) =
λc exp(−λ)

c!

1

1 − exp(−λ)

for c = 1, 2, . . . and λ > 0. This is a Poisson distribution conditioned on at least one

clone, and could be justified under some model of random collision or random collision

followed by selection if there is sufficient tumorigenic potential (Newton et al. 2006).

Here, the polyclonal fraction is θ = 1 − λ/ {exp(λ) − 1}.

3. Geometric: The number C of clones in a tumor has probability mass function

f(c) = ψ(1 − ψ)c−1 for c = 1, 2, . . .

and ψ ∈ (0, 1). This model might be justified if aberrant clones engage in some sort of

recruitment and conversion of additional clones (Shih et al. 2001). Here the polyclonal

fraction is θ = (1 − ψ).

Likelihood-based inference for θ is possible if we invoke a clone-marking model on top

of the clone-binding model. The simplest one is to mark the clones that are bound in a

tumor independently and according to a common distribution over types {γt}. A better

model would entail some positive association among bound clones since they are constrained
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spatially and there may be a semi-regular patchwork pattern of lineage markers within the

tissue. However, it could be computationally challenging to incorporate detailed information

about positive association. Maximum likelihood estimation has some validity even in the

absence of independent marking. We argue in Section 5 that the maximum likelihood

estimate obtained under the independent-marking assumption is conservatively biased, in

the sense of converging to a lower bound on θ, regardless of the positive association among

clones bound in a polyclonal tumor.

Likelihood-based inference requires the marginal probability of a homotypic tumor of

type t, which is obtained by summing over the unknown clonality C. For the three binding

models presented above, and with independent marking, these sums can be solved explicitly.

1. Monoclonal/Biclonal: P (HOMt) = (1 − θ)γt + θγ2
t

2. Conditional Poisson: P (HOMt) = exp(λγt)−1
exp(λ)−1

3. Geometric: P (HOMt) = γtψ
1−γt(1−ψ)

The tumor sample is viewed as a multinomial draw according to these type probabilities,

allowing for the heterotypic class to have probability equal to the complement of the sum

of these homotypic class probabilities. We have not found a closed form expression for the

maximum likelihood estimates, but they may be obtained routinely by numerical methods.

One may either use external estimates of the clonal marker frequencies {γt}, or these may

be also estimated from the count data.

Table 2 shows the maximum likelihood estimates of θ for data from Novelli et al. (1996)

and for data from Merritt et al. (1997). The estimates are rather different from Novelli’s ratio

in these examples. We obtained approximate 95% confidence intervals by first computing a

profile likelihood function in each case (optimizing numerically in the rate parameter γ1) and

then normalizing the profile likelihood to be an approximate marginal posterior distribution

for θ. Confidence intervals mark the central 95% of these distributions. Results from one

data set are amplified in Figure 3, which reveals the lack of robustness of estimates for θ to

changes in the clone-binding model.
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Table 2: Estimation of polyclonal fraction θ: For three data sets shown on left, reported

are MLEs and approximate 95% confidence intervals (CI) using three different models for

how clones are bound into tumors: monoclonal/biclonal (MB), conditional Poisson (CP),

and Geometric (Geo). Also shown are values of the Novelli ratio β̂ and the naive lower

bound LB which is simply the observed proportion of heterotypic tumors. All proportions

are shown as percentages.

Tumor Counts MLE θ̂ (95% CI)

Data set HOM1 HOM2 HET LB β̂ MB CP Geo

Novelli 4 246 13 5 76 64 (40,97) 55 (35,78) 53 (34,72)

Merritt 112 5 93 7 7 58 46 (23,76) 40 (21,66) 37 (20,60)

Merritt 113 1 139 15 10 94 94 (62,99) 83 (55,96) 77 (52,92)

5 Model-based inference is robust to clone-marking

assumptions

Maximum likelihood estimates obtained under the independent-marking model will be biased

if there is positive association amongst the types of the bound clones. Such positive

association is expected owing to the typical patchy structure of mosaic tissue. However,

we show that this bias is expected to be conservative, (i.e., the estimates ought to be low)

since independent marking puts more probability mass on heterotypic tumors than would a

more realistic positive-association marking. To establish the conservative bias, suppose that

clone-type frequencies {γt} are known or can be consistently estimated. Under independent

marking, a tumor will be homotypic type t with probability αt(θ) = (1− θ)γt +
∑

c≥2 f(c)γct .

Positive association of clonal marking amounts to an increased homotypic rate β∗
t (θ) ≥ αt(θ).

The rate of heterotypic tumors under independent marking is a(θ) = 1−
∑

t αt(θ) and under

positive association is b(θ) = 1−
∑

t β
∗
t (θ), both positive by regular marking, and satisfying

a(θ) ≥ b(θ). Both functions are in 1-1 correspondence with the polyclonal fraction θ, and so

either could be used to parameterize a likelihood computation for the independent-marking

model. Suppose that the maximum likelihood estimate for ψ = a(θ) is derived from a
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binomial model on the heterotypic frequency. Even though the independent-marking model

is incorrect, the independent-marking estimate of ψ will be consistent for this population

heterotypic frequency; but in fitting closely to the data, an incorrect value θ̄ = a−1(ψ) 6= θ

will be converged upon. The correct polyclonal fraction is what we would have converged

to using the positive-association model, namely θ = b−1(ψ). Since a(θ) ≥ b(θ), the value

θ̄ to which the independent-marking estimator converges must be no greater than the true

polyclonal fraction θ.

6 Conclusions

The cellular and molecular events that characterize the earliest stages of intestinal tumor

development are not fully understood. In particular, the question of tumor clonality –

does a tumor derive from more than one initiated cell? – has remained somewhat elusive.

Lineage-marker studies provide the approach to address clonality, but many factors affect

the information which can be usefully extracted from lineage-marker data: (1) the marker

must have fidelity otherwise it is not transmitted faithfully through cell division. Ideally the

marker is not affected in any way by tumor growth, and simply records lineages (e.g., this

fails if marker variants are created in subclones inside a developing tumor); (2) the marker’s

mosaic pattern in tissue must be fine-grained so that truly polyclonal tumors have sufficient

opportunity to be heterotypic, otherwise there is insufficient power; (3) the measurements

must be taken early in tumor development else a dominant clone may grow out and mask

earlier polyclonal structure (e.g. Bühler 1967); and (4) measurements must be taken with

great care to ensure that normal clones do not contaminate the tumor and lead to a false

heterotypic determination. Not all clonality studies have satisfied these requirements, but

existing data do indicate the polyclonal origin of a class of intestinal tumors.

Even the ideal lineage-marker study entails a statistical inference problem. We have

discussed aspects of the problem to estimate the polyclonal fraction and have shown through

an analysis of conditional probabilities that Novelli’s ratio does not provide a valid lower

bound for this fraction. Without assumptions on the process by which clones are bound into
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a tumor, the heterotypic fraction is the best lower bound. Maximum likelihood estimates may

be derived using simplified model assumptions, and under certain conditions these simplified

estimates are robust. Though precise estimation of the polyclonal fraction is difficult, other

parameters describing tumor initiation can be inferred when tumor-count data are combined

with spatial information about the mosaic patch structure in lineage-marker studies. For

example the extent of spatial interaction among clones was estimated in Thliveris et al.

(2005).
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Appendix: Proof of gap theorem

We prove something slightly more general than is stated. Let t denote any one of the

clonal types, and reconsider the event HOMt = {N(t) = C} , which has probability 0 <

P (HOMt) < 1 by regularity. Observe that the polyclonal fraction θ is a weighted average

θ = P (C > 1|HOMt)P (HOMt) + P (C > 1|HOMc
t)P (HOMc

t),

where HOMc
t is the complement of HOMt. In a two-type system where t is the majority

type, HOMc
t = {HET ∪ HOM1}, for example. Via convexity, it is sufficient to prove

P(C > 1|HOMt) < θ. By Bayes’s rule, this is equivalent to P (HOMt) > P (HOMt|C > 1).

Now the marginal P (HOMt) is decomposed into non-zero terms according to clonality:

P (HOMt) = P (HOMt|C > 1) θ + P (HOMt|C = 1) (1 − θ)

= aθ + γt(1 − θ)

where γt ∈ (0, 1) is the marginal rate of type t clones and a = P (HOMt|C > 1) has to do

with the clone-marking process. Thus the difference

P (HOMt) − P (HOMt|C > 1) = (γt − a)(1 − θ).

We have assumed θ < 1, and γt ∈ (0, 1) in the statement of the theorem, so the theorem is

true if a < γt. Considering the possible levels of polyclonality C when C > 1,

a = P (HOMt|C > 1)

=
∞

∑

c=2

P (HOMt|C = c) f(c)/θ

=
∞

∑

c=2

P (N(t) = c |C = c) f(c)/θ

<

[

∞
∑

c=2

γt f(c)/θ

]

= γt

where f(c) = P (C = c) is the fraction of tumors comprised of c clones. The last inequality

follows from the definition of a regular marking process. �
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Figure 1: On the gap and Novelli’s ratio β: β would be a valid bound if θ = θ∗, or at least if

the gap between θ and θ∗ is small (case 2), because β ≤ θ∗. The gap is of an unknown size,

and may be large (case 1), in which case β is not smaller than θ.
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Figure 2: Discrepancy between the polyclonal fraction θ and Novelli’s ratio β in the

monoclonal/biclonal, independent-marking model as function of the minority fraction γ1

and the biclonal fraction θ. In the lower left of the plot Novelli’s ratio fails to bound the

polyclonal fraction. The light gray shaded region corresponds to case 1 (Figure 1), and the

dark to case 2.
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Figure 3: A comparison of three model-based estimates of θ using the clonality count data

from Novelli et al. (1996): Plotted are profile likelihood functions that are normalized

to integrate to one, and thus serve as approximate posterior distributions. The nuisance

parameter γ1, the proportion of blue clones, was removed by maximization in each case.

MLEs are noted for each polyclonality model: MB (monoclonal/biclonal); CP (conditional

Poisson); Geo (geometric). Approximate confidence intervals were computed as equi-tail

95% posterior intervals. The black triangle indicates the naive lower bound for θ which is

the observed proportion of heterotypic tumors (5%). The grey triangle indicates the Novelli

ratio β̂ = 76%. Model-based inference about θ is highly sensitive to assumptions about

process by which clones are bound into tumors. In the models considered, the probability is

high that θ is less than the supposed lower bound β̂.


