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Summary. Tumour multiplicity is a frequently measured phenotype in animal studies of cancer
biology. Poisson variation of this measurement represents a biological and statistical refer-
ence point that is usually violated, even in highly controlled experiments, owing to sources of
variation in the stochastic process of tumour formation. A recent experiment on murine intesti-
nal tumours presented conditions which seem to generate Poisson-distributed tumour counts.
If valid, this would support a claim about mechanisms by which the adenomatous polyposis
coli gene is inactivated during tumour initiation. In considering hypothesis testing strategies,
model choice and Bayesian approaches, we quantify the positive evidence favouring Pois-
son variation in this experiment. Statistical techniques used include likelihood ratio testing, the
Bayes and Akaike information criteria, negative binomial modelling, reversible jump Markov
chain Monte Carlo methods and posterior predictive checking.The posterior approximation that
is based on the Bayes information criterion is found to be quite accurate in this small n case-
study.

Keywords: Cancer biology; Model averaging; Model choice; Multiple intestinal neoplasia;
Negative binomial; Reversible jump Markov chain Monte Carlo methods; Tumour initiation

1. Introduction

The Poisson distribution naturally models the number of cancerous tumours that appear in a
tissue during a fixed time period (e.g. Moolgavkar and Knudson (1981) and Kokoska (1987)):
basically, there are many cells in the tissue and each has a small probability of becoming cancer-
ous. However, extra-Poisson variation is widely observed in this sort of tumour count data (e.g.
Drinkwater and Klotz (1981), Moser et al. (1990, 1992), Gould et al. (1996), Nagase et al. (1999),
Chulada et al. (2000) and Ramachandran et al. (2002)). The overdispersion that is observed in
many studies is not readily explained by environmental or genetic factors, since these factors
are often well controlled; rather, the overdispersion is more likely attributable to sources of
variation that are intrinsic to the basic process of tumour formation. For example, there may be
different cellular or molecular mechanisms that mediate the same required set of genetic changes
by which a normal intestinal epithelial cell becomes a tumour. Some of these mechanisms may
be affected by factors that are localized within or near the cell, but others may be systemic,
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inducing correlation between widely separated cells and producing extra-Poisson variation in
the measured tumour count.

Those who carry a defective copy of the adenomatous polyposis coli gene (Apc in mice; APC
in humans) are predisposed to intestinal cancer (e.g. Hardy et al. (2000)). The multiple intestinal
neoplasia (MIN) strain of the laboratory mouse carries a nonsense Apc allele, and, consequently,
develops tumours throughout the intestinal tract (Moser et al., 1990; Su et al., 1992) and thus
provides an experimental system to study the biology and genetics of normal intestinal tissue
and its neoplastic transformation (Dove et al., 1998). As in humans, the murine intestinal tract
comprises a large number of organized groups of proliferating cells called crypts, and it is from
within aberrant crypts that tumours begin to form (Li et al., 1994; Preston et al., 2003).

A Poisson distribution of tumour counts would emerge if after the post-natal establishment
of the crypt layer each crypt becomes aberrant with some small probability and does so indepen-
dently of other crypts (Simon and Gordon, 1995). Considering Poisson approximation theory
(Arratia et al., 1990), we expect Poisson variation to hold even if there is a small degree of
positive correlation between crypts, but if the dependence becomes substantial then the Poisson
approximation breaks down and we would see extra-Poisson variation. Biological factors which
act in a spatially localized way (e.g. within crypts or among only a few neighbouring crypts) are
expected, therefore, to produce a Poisson tumour count distribution.

Haigis and Dove (2003) measured tumour multiplicities in four groups of genetically identical
MIN mice: one control group and three groups which carried different forms of the Robertso-
nian translocation (Rb9). This is a chromosomal construct in which certain pairs of chromo-
somes are fused together. (The translocation alters the genome organization without changing
its content.) The experimental mice, which carried a fusion of chromosome 7 with the Apc
harbouring chromosome 18, were used primarily to study factors by which the wild-type Apc
allele is inactivated within tumours; an important observation was that animals carrying an Rb9
translocation had significantly reduced tumour multiplicity, indicating that non-genetic chro-
mosomal factors play a role in susceptibility to tumours. Haigis and Dove (2003) argued that the
Rb9 translocation inhibits one mechanism of Apc inactivation, namely somatic recombination,
but that it does not alter certain other mechanisms (chromosomal non-disjunction; gene silenc-
ing). Tumours formed in mice with the Rb9 translocation, but they must have done so through
a reduced set of mechanistic pathways. A striking feature of the experimental data was that
the tumour multiplicities in Rb9 animals appeared to exhibit purely Poisson variation. Never
before in the extensive set of MIN mouse experiments had Poisson fluctuations been observed;
such random variation would support the claim that these other mechanisms for Apc inacti-
vation entail only spatially localized effects within the intestine, and further that the somatic
recombination pathway entails non-localized effects. The Haigis–Dove experiment presented
an intriguing interpretation of Apc inactivation: one based on positive evidence supporting the
Poisson hypothesis. The purpose of the present paper is to examine this evidence statistically.

Table 1 reports the full set of tumour multiplicity data that were analysed by Haigis and Dove
(2003). As in many mouse studies, the sample size here is modest; there are four groups of sizes
16, 17, 15 and 18. For notation we retain the group labels as in Haigis and Dove (2003) where
the reader may find the precise definitions. Briefly, the ‘+/+’ group is a control group in which
animals do not carry any Rb9 translocation, and the other groups correspond to different ways
that the fusion of chromosomes 7 and 18 can occur. Following a standard protocol, tumour
counts were measured on the whole intestinal tract from animals that were sacrificed at 60 days
of age. The significant reduction in tumour multiplicity in the Rb9 groups is evident from an
inspection of Table 1 and this can be confirmed by a variety of statistical tests. (Haigis and Dove
(2003) used the nonparametric Tukey–Kramer test.) The suitability of the Poisson hypothesis
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Table 1. Data from the Haigis–Dove study†

Group Tumour multiplicities Mean Variance

+=+ 80, 103, 112, 121, 121, 121, 131, 140, 140, 150, 166, 169, 194, 199, 199, 262 150.5 2102.1
Rb9 trans 5, 7, 8, 8, 9, 9, 11, 12, 12, 13, 13, 13, 14, 15, 15, 16, 18 11.6 12.5
Rb9 cis 7, 7, 7, 8, 8, 8, 10, 10, 10, 10, 11, 11, 12, 12, 20 10.1 10.6
Rb9/Rb9 3, 4, 4, 5, 6, 6, 6, 6, 7, 7, 7, 9, 10, 10, 11, 11, 12, 15 7.7 10.3

†The rightmost columns are sample means and variances.

is suggested by the close agreement of sample means and sample variances in the Rb9 groups.
We assess the evidence supporting this hypothesis.

2. Methods

2.1. Testing strategies
Experimentalists often adopt a hypothesis testing posture when evaluating data. A simple test-
ing approach is to assume that the data are Poisson distributed, with group-specific means
perhaps, and then to assess the evidence against this hypothesis. Conditioning on group sums
to eliminate nuisance parameters, the Poisson counts become multinomials. We can consider
the conditional distribution of some test statistic—for example each group provides a sample
coefficient of dispersion (sample variance divided by sample mean)—and calibrate this test sta-
tistic by using Monte Carlo sampling (Barnard, 1963). This testing approach is straightforward
but it does not quantify the positive evidence supporting the Poisson hypothesis. Non-rejection
implies consistency of the hypothesis with the data and a paucity of contradictory evidence. The
usual interpretation is that we should retain the null hypothesis, but we are faced with the fact
that all historical data in the MIN system exhibit extra-Poisson variation. Taking the Poisson
hypothesis as the null hypothesis seems to be an undue contrivance.

Professor Drinkwater (personal communication) suggested a different hypothesis testing
strategy for the Haigis–Dove problem based on his experience that the negative binomial dis-
tribution often fits tumour count data (e.g. Drinkwater and Klotz (1981)). Indeed the negative
binomial distribution is widely used to model count data (e.g. McCullagh and Nelder (1989)).
Recall that this two-parameter family has probability mass function, for x�0,

p.x|κ, λ/= 1
κ1=κ Γ.1=κ/

Γ.x+1=κ/

Γ.x+1/

λx

.λ+1=κ/x+1=κ
: .1/

In this parameterization, the expected tumour count is λ and the variance is λ.1+κλ/ for κ�0.
The limit κ → 0 corresponds to the Poisson distribution. Recall also that, when viewing this
distribution as a mixture of Poisson components, 1=κ is the shape parameter of the gamma
mixing distribution (Greenwood and Yule, 1920). Drinkwater’s proposal was to allow group-
specific λ-values and to perform a likelihood ratio test for a common shape parameter (i.e.
common κ). The rationale is that the shape parameter characterizes the degree of overdisper-
sion and so testing for equal shapes would assess the significance of variation in the observed
coefficients of dispersion. An advantage in using Drinkwater’s approach is that we are not
assuming the Poisson null hypothesis. However, the inference does not measure the positive
evidence supporting the Poisson hypothesis. An alternative approach, which is not obvious to
many experimentalists, is to eschew hypothesis testing and to frame the problem as one of model
choice or model averaging.
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2.2. Choice of model
We adopt the negative binomial model as a general description of tumour multiplicity. This
is supported by historical data in the MIN mouse and also by goodness-of-fit diagnostic tests
(Section 3.3). Various submodels are obtained by restricting the parameters; for instance setting
κ = 0 corresponds to the Poisson case. To deal properly with the multiple groups, we intro-
duce group labels i= 1, . . . , 4 and allow the possibility that each group can have its own mean
parameter λi and dispersion parameter κi. Therefore, the full model contains eight free param-
eters. Drinkwater’s likelihood ratio test considered above compares this full model with the
five-parameter null model in which κ1 =κ2 =κ3 =κ4 � 0 and the four means are unrestricted.
The simple Monte Carlo tests work on the Poisson null hypothesis that κi =0.

A host of different submodels emerges by considering equality constraints among {λi}, equal-
ity constraints among {κi} and the possibility that each κi may equal 0. Table 2 notes the 15
possible equality patterns among the mean parameters; these correspond to the Bell number
of set partitions of four objects (Bell, 1934). We do not tabulate them all, but we observe that
likewise there are 52 distinguishable constraint patterns for the dispersion parameters. To see
this, note that

52=
4∑

j=0

(
4
j

)
aj .2/

where the aj are also Bell numbers: .a0, a1, a2, a3, a4/ = .1, 1, 2, 5, 15/. There are
(4

j

)
ways to

choose j groups that will have non-zero κi-values; for each such choice there are aj patterns of
equality among the j non-zero values. Taken together, we have 780=15×52 distinct submodels
of the general negative binomial model.

Table 2. Possible patterns of equality among compo-
nents of λ across the four groups†

Index l l-pattern Dimension ql

i=1 i=2 i=3 i=4

1 1 1 1 1 1
2 1 1 1 2 2
3 1 1 2 1 2
4 1 2 1 1 2
5 1 2 2 2 2
6 1 1 2 2 2
7 1 2 1 2 2
8 1 2 2 1 2
9 1 1 2 3 3

10 1 2 1 3 3
11 1 2 3 1 3
12 1 2 2 3 3
13 1 2 3 2 3
14 1 2 3 3 3
15 1 2 3 4 4

†Within each row, two entries are equal if and only if the
corresponding group mean values are equal. The first col-
umn indexes the pattern and the last column gives the num-
ber of free parameters.
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We label each submodel by m= .l, k/ where l∈{1, . . . , 15} is an index of the equality pattern
among components of λ= .λ1, . . . , λ4/, and likewise k ∈{1, . . . , 52} is an index for the equality
and zero pattern for κ= .κ1, . . . , κ4/. By our coding, for example, m= .12, 20/ entails three free
λis and two free non-zero κis. More specifically, the means satisfy λ2 =λ3, λ1 �=λ3, λ1 �=λ4 and
λ3 �=λ4 (this is l=12); the dispersion parameters satisfy κ2 =κ3 =0, κ1 > 0, κ4 > 0 and κ1 �=κ4
(this is k =20).

We can readily maximize the log-likelihood within each submodel and note the number of
free parameters. These quantities can be combined in various ways to score a balance between
model fit and model complexity: the Akaike information criterion AIC (Akaike, 1983) and the
Bayes information criteria BIC (Schwarz, 1978; Smith and Spiegelhalter, 1980). Compared with
testing strategies, the model choice approach more directly measures support for the Poisson
hypothesis. But beyond ranking it does not quantify the extent of the favourable evidence.

2.3. Bayesian approaches
Going further, we pursue posterior analysis by using the negative binomial likelihood and prior
distributions over the multitude of submodels. Our first calculation transforms the BIC-values
into approximate submodel posterior probabilities (Kass and Wasserman, 1995). This does not
change the ranking of submodels, because the approximate posterior mass for submodel m is

p.m|data/∝ exp.BIC=2/,

but it does allow us to calibrate the ranking and it enables the calculation of marginal posterior
summaries such as the posterior probability of the Poisson hypothesis for each group.

The BIC-based posterior computations rely on large sample theory and ought to be viewed
as a first approximation to a more explicit Bayesian analysis. Unsure of the degree of this
approximation, we implement a fully specified Bayesian analysis via reversible jump (i.e. trans-
dimensional) Markov chain Monte Carlo (MCMC) sampling. An advantage of this approach
is that the issues of model choice and parameter estimation are dealt with simultaneously and
there are no large sample approximations; a challenge is that care is required in setting the prior
and in implementing the posterior sampling.

We consider a range of priors which for convenience share the factorization

p.m, λ, κ/=p.m/ p.λ|l/ p.κ|k/ .3/

but which differ in how they assign mass p.m/ to the submodels. One prior, denoted A, entails

p.m/=p.l/ p.k/

=1=15×1=52=1=780

for all submodels m. This has the basic appeal of non-informativeness, but also it aims to mimic
the previous BIC-based computations. The combinatorics of this uniform submodel prior imply
P.κi =0/=15=52≈0:29 for each i, and thus global uniformity does not confer a balance in this
marginal prior probability. A second prior B is set up specifically to address the marginal Poisson
hypothesis; it entails ω =P.κi =0/= 1

2 for all i. To achieve this balance we retain independence
of the pattern indices l and k and uniformity of l, but we modify p.k/ so that it boosts mass on
the Poisson submodels. If the pattern k has j non-zero κi-values, then we take

p.k/=ωj.1−ω/4−j=aj

where aj is the jth Bell number, as in equation (2). The thinking is that each group i tosses an
ω-coin to decide whether or not it will be Poisson distributed; conditionally on the four coin
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tosses there are j non-zero κi-values, and their internal pattern of equality constraints is selected
uniformly from the aj possibilities. Prior B corresponds to one case, ω = 1

2 , in a continuum of
hyperparameter settings. We also compute posterior summaries under the full range of ω-values.
To complete the prior settings, we take vague independent gamma priors for the free param-
eters within each model. Specifically, free components of λ are regulated by a gamma(2,0.1)
distribution and those of κ are regulated by a gamma(1,2) distribution. Posterior analysis indi-
cates little sensitivity to these choices.

Posterior computation is done by MCMC sampling. Standard Metropolis–Hastings updates
are available to sample the free parameters in λ and κ conditionally on the data and the sub-
model m (e.g. Robert and Casella (2002)); however, it is evident that different submodels can
have different dimensions, and thus these basic updates are not suitable for updating m. To
accommodate the varying dimensionality, we invoke a transdimensional MCMC sampler that
allows jumping between submodels of different dimensions (Green, 1995, 2003). In contrast
with many other applications of transdimensional MCMC sampling, this case is interesting
because there is only a partial nesting of submodels. Furthermore, the presence of two pattern
variables l and k in m means that the situation is slightly more general than the typical problem
involving only a single model index. In updating m, we accommodate the partial nesting and
cycle through two move classes: one proposes a new mean pattern l given the dispersion pattern
k, and the other proposes a new k given l. The close linkage between m and .λ, κ/ means that
free-parameter values need to be created and destroyed during these proposals. Further details
are in Appendix A.

The output from the MCMC algorithm provides direct access to properties of marginal pos-
terior distributions. We can look not only at the probabilities of the pattern indices l and k and
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Fig. 1. Trace plots from MCMC runs (chains thinned to 1000 observations): (a) log-posterior value (prior
A); (b) mean pattern index l (prior B); (c) dispersion pattern index k (prior A); (d) number of free parameters,
ql Cqk (prior B)
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various parameters, but we can also evaluate the marginal posterior probabilities of the Poisson
hypothesis for each treatment group. Validity of these numerical summaries rests on properties
of the chain and the quality of our implementation. Part of the MCMC output analysis is to
study trace plots such as in Fig. 1, which help to confirm that our MCMC sampler is performing
sufficiently. Our analysis indicates that the reported posterior probabilities are accurate to two
decimal places.

Although the general negative binomial model fits well in historical data (e.g. Drinkwater and
Klotz (1981)), its validity ought to be checked in the present case. Posterior predictive checks
are suitable for this purpose (Gelman et al., 2003). For each four-group data set that is simulated
from the posterior predictive distribution, we find the best fitting negative binomial distribution
in each group, and then we measure the maximum distance between each fitted distribution
function and the corresponding empirical distribution.

3. Results

3.1. Testing strategies
We find via Monte Carlo testing that each of the Rb9 groups is consistent with the Poisson
hypothesis but the +=+ group is not. At the same time, we find that the data are consistent with
a common shape negative binomial hypothesis allowing group-specific means (Table 3). The
testing approach is informative but it remains inconclusive as a way to quantify the evidence
supporting the Poisson hypothesis.

3.2. Choice of model
Table 4 indicates the position of several submodels by the criteria BIC and AIC. Both criteria
concur that, in the context of the general negative binomial model, the best explanation of the

Table 3. Testing results†

Group p-value Results for the following hypotheses:

Alternative Null

κ̂ L κ̂ L0

+=+ 0.001 0.076 −82.52 0.054 −82.94
Rb9 trans 0.37 0.001 −45.21 0.054 −45.99
Rb9 cis 0.38 0.000 −37.43 0.054 −38.21
Rb9/Rb9 0.15 0.033 −45.34 0.054 −45.41

−210.50 −212.55

†The second column shows p-values from the Monte Carlo test of
the Poisson null hypothesis. Subsequent columns give results of the
likelihood ratio test for common κ. In each case the maximum likeli-
hood estimate of the group-specificλ is the sample mean (see Table 1).
Shown here are maximum likelihood estimates of the group-specific
κ-values on the alternative hypothesis and the common estimate on
the null hypothesis. The contribution to the log-likelihood is L for
the unrestricted case and L0 for the null hypothesis. The generalized
likelihood ratio statistic is 4:1=2.212:55−210:50/, which is not sig-
nificant by standard assessments.
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Table 4. Choice of model†

Submodel l-pattern k-pattern L q BIC(r) AIC(r)
m=(l, k)

i=1 i=2 i=3 i=4 i=1 i=2 i=3 i=4

(12,9) 1 2 2 3 1 0 0 1 −211.62 4 1 1
(12,5) 1 2 2 3 1 0 0 0 −211.68 4 2 2
(12,13) 1 2 2 3 1 0 1 1 −212.43 4 3 6
(12,14) 1 2 2 3 1 1 0 1 −212.46 4 4 7
(15,9) 1 2 3 4 1 0 0 1 −210.71 5 8 3
(15,5) 1 2 3 4 1 0 0 0 −210.76 5 9 4
(12,20) 1 2 2 3 1 0 0 2 −211.42 5 14 5
(14,9) 1 2 3 3 1 0 0 1 −212.80 4 7 31
(14,5) 1 2 3 3 1 0 0 0 −213.31 4 11 35
(15,16) 1 2 3 4 1 1 1 1 −212.55 5 40 52
(15,52) 1 2 3 4 1 2 3 4 −210.50 8 160 91

†For a collection of 11 interesting submodels (out of 780), shown are the submodel index m and its components
l, the mean pattern index, and k, the dispersion pattern index. The l-pattern is as in Table 2. The k-pattern is
similar except that 0 indicates κi = 0 (Poisson variation). L is the maximized log-likelihood, q is number of free
parameters and BIC.r/ and AIC.r/ are respectively the rank of the submodel in terms of BIC and AIC.

Haigis–Dove data entails Poisson variation and a common mean in Rb9 cis and Rb9 trans
groups, and common shape but different means in the other two groups. Poisson variation in
all Rb9 groups is a close second-place explanation for both criteria, though they balance the fit
and complexity differently for other submodels.

3.3. Bayesian approaches
In the first calculation we transform the BIC-values into submodel posterior probabilities. The
top two submodels from Table 4 each carry 10% of the posterior mass, the best 11 submodels
account for half the posterior mass and 80% probability concentrates on the best 36 submodels.
Again we can conclude that evidence favours Poisson variation in the Rb9 cis and Rb9 trans
groups.

The full Bayesian analysis via MCMC sampling allows a range of inferences and also mea-
sures the accuracy of the BIC-based computation. Of interest to us is the marginal posterior
distribution over the discrete set of submodels. Table 5 records the (non-zero) marginal posterior

Table 5. Full Bayesian approach†

Index l l-pattern Posterior probability

i=1 i=2 i=3 i=4 Prior A Prior B

5 1 2 2 2 0.09 0.07
12 1 2 2 3 0.57 0.59
13 1 2 3 2 0.01 0.01
14 1 2 3 3 0.19 0.18
15 1 2 3 4 0.15 0.15

†Shown are mean patterns l with non-zero marginal posterior proba-
bilities (see Table 2).
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probabilities of the mean pattern index l. The modal pattern l=12, which accounts for just over
half the posterior mass under either prior, entails three different rates of occurrence of tumours:
a common rate for Rb9 trans and Rb9 cis, and distinct rates for the other groups. Significantly,
there is no posterior support for any of the values of l in which the control group +=+ shares
a mean parameter with any of the other groups. This is consistent with earlier calculations
indicating the strong effect of the Rb9 translocation on expected tumour count.

A similar analysis of the dispersion pattern k indicates that two patterns contain most of the
posterior mass. They are k =5, in which only the +=+ group is not Poisson, and k =9, in which
+=+ and Rb9/Rb9 share a non-zero κ-value and the other groups are Poisson. Other disper-
sion patterns are considerably less probable, although there is more mass outside the modal two
values using prior A than using prior B.

Table 6 shows 11 submodels m = .l, k/ which include the top six submodels for priors A
and B. Ranking is by marginal posterior probability. The top two submodels, m= .12, 5/ and
m = .12, 9/, are the same as those selected by BIC and AIC (Table 4), although the order is
reversed; further differences emerge as we look down the ranking. These top two submodels

Table 6. Full Bayesian approach†

Submodel index l-pattern k-pattern Posterior Ranking
m=(l, k) probability

i=1 i=2 i=3 i=4 i=1 i=2 i=3 i=4 Prior A Prior B
Prior A Prior B

(12,5) 1 2 2 3 1 0 0 0 0.09 0.23 1 1
(12,9) 1 2 2 3 1 0 0 1 0.09 0.11 2 2
(14,9) 1 2 3 3 1 0 0 1 0.04 0.05 3 5
(15,5) 1 2 3 4 1 0 0 0 0.03 0.06 8 3
(12,20) 1 2 2 3 1 0 0 2 0.04 0.04 5 6
(14,5) 1 2 3 3 1 0 0 0 0.02 0.05 11 4
(12,13) 1 2 2 3 1 0 1 1 0.04 0.02 4 12
(15,9) 1 2 3 4 1 0 0 1 0.03 0.03 9 9
(12,14) 1 2 2 3 1 1 0 1 0.03 0.02 6 15
(15,16) 1 2 3 4 1 1 1 1 0.00 0.00 65 90
(15,52) 1 2 3 4 1 2 3 4 0.00 0.00 162 —

†Shown are posterior probabilities and rankings for 11 submodels containing the six most highly ranked sub-
models for both priors.

Table 7. Bayesian approach†

Method +=+ P(κi =0|data)

Rb9 trans Rb9 cis Rb9/Rb9

BIC-approximation 0.00 0.58 0.57 0.37
Full, prior A 0.00 0.61 0.60 0.32
Full, prior B 0.00 0.80 0.80 0.53

†Shown are posterior probabilities that tumour multiplicities fol-
low a Poisson distribution for each group. Recall that prior B has
P.κi =0/= 1

2 and in other cases P.κi =0/=15=52.
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account for 18% of the total posterior mass under the flat prior A and 34% under the Poisson-
balanced prior B.

Of primary interest is the posterior probability of the Poisson hypothesis, i.e. P.κi =0|data/

for each group i. Table 7 shows these marginal probabilities for the full analysis via MCMC
sampling using priors A and B, and for the BIC-approximation. The final evidence is relatively
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Fig. 2. Marginal posterior probability (ı) of the Poisson hypothesis versus prior probability on a grid of 48
prior values ( , constant Bayes factor BF): (a) Rb9 trans group, BF D 3:7; (b) Rb9 cis group, BF D 3:8;
(c) Rb9/Rb9, BFD1:1
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Fig. 3. Empirical distributions ( ) of tumour counts from Table 1 and best fitting negative binomial distribu-
tions (��) (fitting was done by maximum likelihood separately in each group): (a) C=C group; (b) Rb9 trans
group; (c) Rb9 cis group; (d) Rb9/Rb9

weak, but all calculations support the Poisson model for Rb9 trans and Rb9 cis. The support
is positive and in favour of the Poisson hypothesis, with posterior probability 0.6 and 0.8 for
priors A and B respectively. We find that the Bayes factor

BFi = P.κi =0|data/=P.κi > 0|data/

P.κi =0/=P.κi > 0/

is insensitive to the prior setting; BFi ≈4 for Rb9 trans and Rb9 cis, and BFi ≈1 for Rb9/Rb9.
Interestingly, the stability of the Bayes factor remains evident when we rerun the MCMC cal-
culations over a grid of 49 different prior settings for P.κi =0/ in (0.02, 0.98) (Fig. 2).

To assess the goodness of fit of the general negative binomial model we consider posterior pre-
dictive checks. Fig. 3 compares the empirical distribution of tumour counts within each group
to a best fitting negative binomial model for that group. To calibrate these fits, we compare Fig.
3 with similar results for 1000 data sets simulated from the posterior predictive distribution.
The 1000 parameter settings were taken by thinning one of the MCMC runs under prior A. The
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Fig. 4. Posterior predictive checks using as test statistic the maximum difference between predicted sample
empirical and best fitting negative binomial models, as in Fig. 3 (jj, values for observed data, and thus we have
no evidence against the general negative binomial model): (a) C=C group; (b) Rb9 trans group; (c) Rb9 cis
group; (d) Rb9/Rb9

results in Fig. 4 indicate an adequate fit of this general model and thus support the model-based
computations.

4. Discussion

The biological mechanisms that regulate the intestinal epithelium must co-ordinate the contin-
ual proliferation of tens of millions of cells. We know that tumours form when this regulation
fails, and yet much remains unknown about the early stages of tumour formation. A neces-
sary early genetic step in the process is loss of the APC or Apc gene product. One pathway to
Apc inactivation (somatic recombination) was closed in the Rb9 animals of the Haigis–Dove
experiment, and so their tumours were obliged to lose Apc by some other mechanism (e.g. chro-
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mosomal non-disjunction or gene silencing). By our statistical analysis we have measured the
distribution of the resulting tumour counts and have found positive evidence supporting Pois-
son variation. Poisson variation is predicted if the Apc inactivation mechanisms are spatially
localized in the intestine, rather than involving systemic factors which would induce extensive
spatial correlation and extra-Poisson variation. Indeed it is difficult to see how Poisson varia-
tion could occur in the absence of spatial independence (or at least weak spatial dependence),
considering various characterizations of the Poisson distribution in terms of weakly dependent
Bernoulli or count variables (Arratia et al. (1990), theorem 1, and Daley and Vere-Jones (1988),
theorem 2.2).

The statistical tools that were employed in this case-study include hypothesis testing, model
selection, model averaging and posterior predictive checking. Though they vary in terms of com-
putational demands and the nature of their conclusions, all the approaches are either consistent
with or directly support the hypothesis that Rb9 data are Poisson distributed. This case-study
provides a context for comparing different statistical approaches. We find limitations of clas-
sical hypothesis testing. We find that different model choice schemes can agree on the best
explanation of data and can provide positive support for certain hypotheses. The most exten-
sive inferences are provided by a full model-based Bayesian analysis. As expected by theory (e.g.
O’Hagan (1994)), the flat prior calculations are in closer agreement with the BIC-approximation
than those for the prior which distributes mass unequally to control the marginal Poisson prob-
ability. Noting the small sample size, a striking feature in this case-study is the quality of the
asymptotic BIC-approximation. We gain insights into the use and effectiveness of fully specified
Bayesian analysis fitted with transdimensional MCMC methods. Though it is more computa-
tionally demanding than the other approaches and requires more detailed specification, it also
provides the richest and most quantitative conclusions. This approach deals simultaneously with
submodel constraints and free-parameter values, and thus avoids problems that are inherent
in other approaches. The posterior distributions provide detailed information beyond what we
require to address the primary scientific question concerning Poisson fluctuations, such as infor-
mation on differences between the Rb9 classes. Future experiments illuminating the mechanisms
of intestinal tumour growth may provide a context for this information.
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Appendix A: Markov chain Monte Carlo implementation

Our sampler is designed to take advantage of the partial nesting of the λ and κ constraint patterns. In
particular, suppose that the current mean pattern is indexed by l. All moves that propose a new state l′ of
different dimension (i.e. ql′ �= ql) are such that either the pattern of λ corresponding to l is nested within
the pattern corresponding to l′ or vice versa. At most a move that alters the dimension by 1 is attempted.
Table 8 details the permissible models l′ which can be proposed given that the current model is l. We
emphasize again that for such moves k remains constant between the current and new model. A similar
table (which is not shown) can be created for the second move class which updates k while keeping l fixed.

Consider the dynamics of one particular transdimensional type of move. Suppose that we are in sub-
model m= .l, k/. We propose a move to submodel m′ = .l′, k/ as follows. With probability bl we propose a
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Table 8. MCMC implementation†

Current mean Permitted birth Permitted death Permitted switch
structure l proposals l′ proposals l′ proposals l′

1 2, 3, 4, 5, 6, 7, 8 — —
2 9, 10, 12 1 3, 4, 5, 6, 7, 8
3 9, 11, 13 1 2, 4, 5, 6, 7, 8
4 10, 11, 14 1 2, 3, 5, 6, 7, 8
5 12, 13, 14 1 2, 3, 4, 6, 7, 8
6 9, 14 1 2, 3, 4, 5, 7, 8
7 10, 13 1 2, 3, 4, 5, 6, 8
8 11, 12 1 2, 3, 4, 5, 6, 7
9 15 2, 3, 6 10, 11, 12, 13, 14

10 15 2, 4, 7 9, 11, 12, 13, 14
11 15 3, 4, 8 9, 10, 12, 13, 14
12 15 2, 5, 8 9, 10, 11, 13, 14
13 15 3, 5, 7 9, 10, 11, 12, 14
14 15 4, 5, 6 9, 10, 11, 12, 13
15 — 9, 10, 11, 12, 13, 14 —

†Shown are the values of the mean pattern index l′ that can be proposed when
the current mean pattern index is l (the labels are as in Table 2).

move to l′ such that ql′ =ql + 1 (a birth move). Alternatively, with probability dl we propose a move to l′

such that ql′ = ql − 1 (a death move). We set b0 = 1, d0 = 0, b15 = 0 and d15 = 1 and for all other values of
l we take bl = dl = 1

2 . Having chosen between a birth and death move, we choose the particular value of
l at random from the rl,ql′ particular candidates. With the model proposed in place, we need to propose
new parameter values λ′. Importantly, we note that we are actually proposing a move from the ql unique
parameter values λ̃1, . . . , λ̃ql

to the ql′ unique parameters λ̃′
1, . . . , λ̃′

ql′ . For the birth move, this is achieved
by generating a lognormal.0, σλ/ random variable u and then setting

λ̃′
i1

= λ̃i1 u,
λ̃′

i2
= λ̃i1 =u,

λ̃′
j =

{
λ̃j j �= i1, j< i2,
λ̃j+1 j �= i1, j> i2:

The values of indices i1 and i2 are obvious from the current and proposed mean patterns l and l′ as shown
in the example below. The proposed parameter vector λ′ is then immediate from λ̃′

1. . . , λ̃′
ql′ and κ remains

unchanged.
To clarify this move, consider the example of moving from model l=8 to model l′ =12. This is a birth

move since ql = 2 and ql′ = 3 and is allowed since l′ = 12 is tabulated as an allowable candidate (Table 8)
for l=8. Suppose that the value of λ is λ= .λ1, . . . , λ4/. The two unique parameters are λ̃1 =λ1 =λ4 and
λ̃2 =λ2 =λ3. Here i1 =1 and i2 =3, which means that we propose a move to λ̃′

1, . . . , λ̃′
3, by setting λ̃′

1 = λ̃1u,
λ̃′

2 = λ̃2 and λ̃′
3 = λ̃1=u. This gives λ′ = .λ′

1, . . . , λ′
4/= .λ̃′

1, λ̃′
2, λ̃′

2, λ̃′
3/.

Calculating the acceptance probability of a birth move is straightforward once the dynamics of the
reverse death move are considered. To do so, we suppose now that the chain is in model m′ = .l′, k/, with
parameters λ′ and κ. Having chosen a death move (with probability dl′ ) we propose a new mean structure
l, at random from the rl′ ,ql

possible candidates. The proposed mean parameter λ is then given by

λ̃i1 =√
.λ̃′

i1
λ̃′

i2
/,

λ̃j =
{

λ̃′
j j �= i1, j< i2,

λ̃′
j−1 j �= i1, j � i2,

and the dummy random variable u is given by

u=√
.λ̃′

i1
=λ̃′

i2
/,
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where, as above, i1 and i2 are apparent from the new and existing mean structures l and l′.
Following the methods that were prescribed in Green (2003) it follows that the acceptance probabilities

for the birth move and reverse death moves are given by min{1, A} and min{1, A−1} respectively, where

A= L.x|m′, λ′, κ/ p.m′, λ′, κ/

L.x|m, λ, κ/ p.m, λ, κ/

dl′

bl

rl,q′
l

rl′ ,ql

1
gσλ

.u/
|J |: .4/

Here the first factor contains the ratio of posteriors, comprising the ratio of likelihoods L and the ratio of
priors which depends on whether prior A or prior B is used. The second factor is the ratio of the proposal
distributions, where gσλ

is the probability density function of the lognormal.0, σλ/ distribution. The final
factor is the absolute value of the Jacobian J , which simplifies to

J =

∣∣∣∣∣∣∣∣

@λ̃′
i1

@λ̃i1

@λ̃′
i2

@λ̃i1

@λ̃′
i1

@u

@λ̃′
i2

@u

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
u

1
u

λ̃i1 − λ̃i1

u2

∣∣∣∣∣∣∣
=−2λ̃i1

u
:

In addition to the move that is detailed above, at each sweep of our sampler we include a birth–death
move pair to update the dispersion structure k while keeping l fixed. The dynamics of this move are similar
to the above and we omit the details. To improve the mixing properties of our sampler, we also include a
second model changing move type. Again, this move type, which we call a switch move, either proposes
a new mean structure l while retaining the current dispersion index k or vice versa. At each sweep, an
attempt is made to update both l and k in this manner. Unlike the birth–death type of move, rather than
proposing a model with one more or one fewer free parameters, the switch move proposes a model with
the same dimension. The new proposed values λ̃′ (or κ̃′) for the underlying parameters are then drawn
from independent log-normal distributions, independently of the current values λ̃ and κ̃. The acceptance
probability is then easily derived following standard methods. Further details of the reversible jump moves
along with all aspects of the MCMC sampler can be found in chapter 3 of Hastie (2004).

Beyond model changing moves, our sampler also includes standard Metropolis–Hastings moves to
update each of the free parameters in λ and κ in turn. For the component being updated, the proposed
new value is the product of the current value and a random log-normal increment and is accepted with
probability derived in the usual fashion.

For both priors we run the MCMC algorithm for 1100000 sweeps and discard the first 100000 as
burn-in. We subsample every 100 observations, leaving 10000 observations. Our sampler typically gives
transdimensional acceptance rates of between 6% and 12% for prior A and 5% and 8% for prior B, depend-
ing on the type of move. In both cases the fixed dimensional acceptance rates vary between 10% and 47%.
On the sensitivity analysis in Fig. 2, we ran the same codes but subsampled every 10 observations.

Although some tuning has been carried out, the sampler has not been optimized and more desirable
acceptance rates could no doubt be achieved. However, we think that with the current parameter settings
the mixing is adequate. This is supported by the trace plots in Fig. 1 and the fact that multiple MCMC
runs started from random initial states produce similar numerical results. Reported posterior probabilities
are averages across two independent MCMC runs. In all instances we estimate the Monte Carlo standard
error to be less than 0.005.
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