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ABSTRACT Animals in a certain population of mice each carry a mutant
allele called � with probability one-half. This population is bred to a strain
of mice which carry the Min allele of the APC gene, an allele which results
in the development of intestinal tumors. Offspring from this cross are geno-
typed for Min and tumor counts are recorded. It is assumed that offspring
carrying only Min have tumor counts distributed according to

���
, while

offspring having both Min and the � allele have tumor counts distributed
according to

���
, a probability measure assumed to be stochastically smaller

than
���

. Presence of the Min allele is observable, but presence of the � al-
lele is not. Given the tumor count data and assuming the stochastic ordering
constraint, our goal is to estimate

� �
,
� �

and the the unobserved genotype
information. This is done by putting a nonparametric prior on the space of
all pairs of stochastically ordered tumor count distributions, and computing
posterior quantities of interest using MCMC.

1 Introduction

People with familial adenomatous polyposis (FAP) develop hundreds to
thousands of benign tumors of the colon, which if untreated eventually
progress to become carcinomas. The disease results from an inherited mu-
tation in the adenomatous polyposis coli (APC) gene. The Min mutation in
the mouse homologue of APC results in a phenotype very similar to human
FAP. Mice with the Min mutation thus provide a model for studying this
type of inherited colon cancer (Dietrich et al., 1993).

In a mutagenesis experiment, a mouse is obtained which shows signs of
carrying a mutant allele at a modifier gene, suppressing the tumor-causing
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effects of Min. In order to genetically map the location of the modifier
gene, it is necessary to breed and identify a group of animals carrying
the modifier allele. Although inheritance of the modifier is not directly
observable, animals resulting from a breeding experiment carry the mod-
ifier with probabilities determined by the rules of Mendelian inheritance.
Conditional upon the unobserved pattern of inheritance, each animal is
modeled as having a tumor count sampled from either a carrier or a non-
carrier probability distribution. Our goal is to estimate the two probability
distributions and identify likely carriers and non-carriers of the modifier,
assuming only that the tumor count distributions are stochastically ordered.

We take a nonparametric Bayesian approach, putting a prior on the space
of pairs of stochastically ordered distributions. Such a prior can be con-
structed indirectly by putting a Dirichlet prior on the set of bivariate distri-
butions of latent observations, members of this set having support only on
ordered pairs of points. The marginals of such distributions will follow the
stochastic ordering, and thus the Dirichlet prior on distributions of latent
observations induces a prior on pairs of stochastically ordered distribu-
tions. This technique of modeling a collection of constrained distributions
via an unconstrained latent distribution is discussed by Hoff (2000) in the
context of maximum likelihood estimation.

Although construction of our prior is straightforward, computation of
posterior quantities is quite difficult. We construct a Markov chain to gen-
erate approximate samples from the posterior. In order to achieve sufficient
mixing in our sequence of posterior samples, our chain uses a combination
of Gibbs and Hastings updates, based on full and partial conditioning (Be-
sag, Green, Higdon and Mengersen, 1993).

2 Breeding Scheme

A kindred founder mouse is suspected of carrying an allele, referred to
hereafter as � , which suppresses the tumor-causing effects of Min. This
kindred founder is bred to the BTBR strain of mice to produce a new popu-
lation, members of which carry the � allele independently with probability
one-half. Animals in this population are referred to as subkindred founders,
for which presence or absence of � is unobserved.

Subkindred founders are bred to the B6 Min/+ strain of mice, mem-
bers of which carry one copy of the Min allele, causing intestinal tumor
growth. From this cross, the resulting offspring carrying Min are identified
by genotyping and their tumor counts are recorded. This group of mice is
referred to as the NF population. Note that if a subkindred founder carries
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FIGURE 8.1. Basic Breeding Scheme

the � allele, then so will roughly half of its NF offspring.
This breeding scheme and model of inheritance are outlined in Figure

8.1. We let ��� be the random variable indicating presence or absence of
the � allele in the � th subkindred founder, �����	��
�
�
��� , and note the
Mendelian model of inheritance implies ��� ��
�
�
�� ��� are i.i.d. Bernoulli(1/2)
random variables. One goal of this paper is to estimate the � � ’s from the NF
tumor count data. These estimates of carrier status will be used in future
work to genetically map the location of the modifier gene.

Each NF animal inherits one set of chromosomes from its subkindred
parent and one set from its B6 Min/+ parent. Because of the possibility
of chromosomal crossing-over, each chromosome inherited by an NF ani-
mal from its subkindred parent may be a mixture of chromosomal material
from the kindred founder and the BTBR strain. In the region of the genome
where � resides, the probability that a particular NF mouse has chromoso-
mal material from the kindred founder is one-half. We denote the indicator
of this event for the � th mouse in subkindred � as ������� ��� . The ������� � � ’s are
i.i.d. Bernoulli(1/2) random variables, and are independent of the � � ’s. The
indicator of the event that mouse !��"�#�%$ has the � allele can be written as& ����� � � � � � � ����� ��� .

We note that some of the data analyzed in this paper were generated
using slightly different breeding schemes. However, the basic structure of
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the above model is applicable to all of them, and the carrier and non-carrier
tumor count distributions should be common to all subkindred populations,
regardless of the particular breeding scheme.

3 Latent Tumor Counts and Stochastic Ordering

Let
� � and

���
denote the tumor count distributions of NF animals which

are non-carriers and carriers of � respectively, and let the set of all possible
tumor counts be � . Our assumptions about � suggest a sample from

� �
is “probably larger” than a sample from

���
. One possible mathematical

model for such an assumption is that
� � is stochastically larger than

���
,

that is
��� !�� �	� $�
 � � !�� �	� $��� , in which case we write

������� � .
Theorem 1:

������� � if and only if there exists a measure
�

on � ������ �
��� � � 
 � ��� such that

� � and
���

are the first and second
marginals of

�
.

The above result can be proven directly as by Lehmann (1986, Section 3.3),
or can be seen as an application of a Choquet-type theorem, as described
by Hoff (2000). Using this parametrization, an observation � distributed
according to

��� ��� � �	�! can be modeled as follows:

" Sample
��# �

;

" observe � � � �
.

We can think of
�

as being partially observed latent data, and � as the
observed data. Estimating

� � and
���

subject to the stochastic ordering
constraint can be done via unconstrained estimation of the measure

�
. In

this way, a constrained estimation problem can be rewritten as an uncon-
strained missing-data problem, which is often easier to solve.

This parametrization provides a natural interpretation of the stochastic
ordering constraint: We assume the tumor count � of each animal in our
experiment is a deterministic function of & �$�&% ��� � , the indicator of the
presence of � , and other unrecorded information ' ��(

, so � �)��!*' � & $ .
If we assume the presence of � reduces tumor count, then it is natural to
suppose ��!*' ��� $+
,� !*' � % $-�.' , i.e. all else being equal, the presence of

� will not increase tumor count. Now define
� !*' $ � ��� � !*' $�� � � !*' $ � �� � !*' � % $��/� !*' ��� $ � as the vector of latent tumor counts. Any probability

measure on
(

induces a canonical measure
�

on
�

so that
� � 
 � � a.s.

�
.

Furthermore, the marginals of
�

will satisfy the ordering
�0����� � .
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4 A Hierarchical Model

Our goal is to estimate
� � , ��� , and the missing subkindred genotype infor-

mation � � ��
�
�
�� �	� from the observed tumor count data. A nonparametric
Bayesian approach involves a prior for ! � � � � � $ having support on all pairs
of stochastically ordered measures on � 
 Such a prior is induced by the
construction of a prior for the latent tumor count distribution

�
: If the sup-

port of the prior for
�

includes all possible distributions of ordered latent
tumor counts in �

�
, then by virtue of Theorem 1, the induced prior on the

marginals has support on all pairs ! � � � � � $ such that
� � ��� � .

In this paper, our prior for
�

is based upon a simple parametric family
of probability measures for latent tumor counts. Our uncertainty about the
adequacy of the parametric family is quantified by assuming

�
is a sam-

ple from a Dirichlet process, centered around a base measure which is a
member of the parametric family. A parametric prior on the base measure
results in a nonparametric hierarchical prior for

�
.

4.1 A Parametric Model For Latent Tumor Counts

Suppose a set of cells in an organism have a certain probability of devel-
oping into tumors independently of one another. A model for total tumor
count would then be a binomial distribution. Since the probability of tu-
morigenesis is typically quite small, and the number of cells in question is
quite large, the binomial model of tumor counts can be well approximated
by a Poisson model. Now suppose we are looking at a population of tu-
mor counts, obtained from a population of organisms, each of whom have
potentially different rates of tumorigenesis. Assuming a gamma prior for
the population of rates, the resulting distribution of tumor counts follows
a negative binomial model, a two parameter family of distributions with
support on the nonnegative integers, with a density given by

��������� � � ! �
	 � �� $ �
� ! ��� � $� ! ��� � $ � !�� $

� �� �������
� �
� ������� 


With this parametrization, � ! �
	 � �� $ � �
, and � ��!�! �
	 � �� $ � � ! � �"�$# � $ .

Modeling tumor counts using the negative binomial distribution has been
discussed before, for example in Drinkwater and Klotz (1981).

Our parametric model for latent tumor counts is as follows: We assume
the tumor count

� � of each non-carrier of � follows a negative binomial ! � �� $
distribution. We model tumor suppression by assuming each tumor that
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would have developed without � develops with probability � in the pres-
ence of � , independently of the other tumors. This implies the conditional
distribution of the suppressed tumor count

� �
given

� � is binomial ! � � � � $ ,
and so the resulting joint distribution of ! � � � � � $ has support on

� � 
 � � . It
is interesting to note that, unconditional on

� � , � � is distributed according
to a negative binomial ! � � �� $ distribution, and so � can be interpreted as
the multiplicative effect of � on mean tumor count.

4.2 Nonparametric Extension

Our knowledge of tumorigenesis suggests the above model is reasonable,
but we would like to relax the strict parametric assumptions. This can be
done by using the Dirichlet prior: A Dirichlet prior

� !�� ��� $ is a probability
measure on a space of distributions parametrized by a positive weight pa-
rameter � and a base measure

� �
. A probability measure

�
sampled from� !�� ��� $ is “centered” around

���
in the sense that if &�� ��
�
�
�� & � 	 � are i.i.d.

observations from
�

, then marginally ��� �
	 !�� ! & � $�$� � ��	������ ! & � $� . How-
ever, such observations are marginally correlated, and in particular

����� ! & �����& $ � # !�� � � $�� � � �� �� � � �

where � �� is the variance of a single observation under the base measure���
. In fact, as �"! %

,
�

converges to a point-mass measure with support
on a random draw from

���
(Sethuraman and Tiwari, 1981). See Ferguson

(1973) or Blackwell and MacQueen (1973) for a more detailed account of
the Dirichlet prior.

Our nonparametric model for the latent tumor count distribution
�

is a
Dirichlet prior with a fixed � parameter and a random base measure. Our
uncertainty about the base measure is quantified by a parametric prior #
on a family of base measures, parametrized by

" the expectation of the non-suppressed tumor counts
� � $ ! � � $ ;

" the multiplicative effect � of � , so that � � � $ ! � � $ ;
" the expected sample variance of the non-suppressed tumor counts� � � $&%�' ! � ����� ��� � � � �� � $ � # !�� � � $)( .

More specifically, for a given value of * � ! � � � �+� � $ , the base measure��,
is given by

" � � � � # !�� �� � � $ , where � �� � � � !�� � � $ # �.-
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FIGURE 8.2. Marginal samples from
�����������

, with
� 	 
��

and (a)
=(20,150,.25), (b)


=(17,150,.75). Thick lines are marginals of

���
, and solid and

dashed lines represent the non-suppressed and suppressed groups respectively.

" ��, ! � � $ � ������������� ! � � 	 � �� $ ;
" ��, ! � � 	 � � $ � ������� ! � � 	 � � � � $ .

Given a prior # on * , the complete hierarchical model is as follows:

" Hyperparameter: * # # !�* $ ;
" Latent tumor count distribution:

� 	 * # � !�� � , $ ;
" Latent observations:

� � � � � � ��
�
�
 � � � ��� � � � 	 � #�� 
 � 
�� 
 � ;

" Genotype Information: � � � � � � ��
�
�
 � � � ��� � � � � � � ��
�
�
�� � � #
i.i.d. Bernoulli(1/2);

" Observed data: � ����� � � �
 � ����� ��� � � if ������� � � � � � % -� ����� ��� � � if � ����� � � � � � �	


Animals with the Min allele without � have been well studied, popu-
lations of such mice having average tumor counts of roughly 20 and a
population variance of about 150. We therefore use a gamma(40,0.5) prior
for

�
and gamma(150,1) prior for � � to reflect our uncertainty about these

parameters. The effect of � is not known; this uncertainty is quantified by
a uniform prior for � on the interval ! % ��� $ .
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FIGURE 8.3. Some tumor count data.

The � parameter determines, among other things, how close the tumor
count measure

�
is to the base measure

� ,
for a given * . For each of two

different
��,

we have drawn 10 samples from a
� !�� � , $ distribution with� � � % and plotted the resulting marginals in the two panels of Figure 8.2.

Having studied other populations of such mice, we think this � -value of
10 roughly reflects our uncertainty about the fit of the parametric negative
binomial/binomial model.

5 Data Analysis

Data were collected from 74 subkindreds, with tumor counts from 968 NF
animals. Tumor counts ranged from zero to 79, with an average of 15.74
and a standard deviation of 11.51. Tumor count data from 21 subkindreds
selected at random are shown in Figure 8.3. Each vertical line represents a
subkindred, with dots plotted along a line representing the tumor counts of
NF offspring from the corresponding subkindred founder.

Recall that a subkindred founder carrying � will pass the allele on to
each of its NF offspring independently with probability one-half. We there-
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fore expect tumor counts from such a subkindred to be an approximately
equal mix of high and low values. Conversely, we expect mostly high tu-
mor counts from animals in a subkindred lacking � . With this in mind, we
might categorize subkindred founders represented on the right-hand side
of Figure 8.3 as likely carriers, and those on the left-hand side as likely
non-carriers. One goal of this data analysis is to make our determination
of carrier versus non-carrier status more precise.

5.1 Markov Chain Implementation

Given the observed tumor count data � , we wish to calculate posterior
estimates of the tumor count distributions

� � and
���

(which are deter-
ministic functions of

�
), and the subkindred genotype information � �

! �%� ��
�
�
�� ��� $ . These posterior quantities of interest involve complicated
integrals over high-dimensional spaces. Therefore, we approximate these
integrals by empirical distributions of samples from a Markov chain whose
stationary distribution is the desired posterior. To facilitate the sampling,
we include the latent tumor counts

� � ! � � � � � � ��
�
�
�� � � ��� � � � $ and the pa-
rameter * in the construction of our chain. Given current values ( � � � � � � * � �� �

), one scan of the chain consists of

1. sampling � ��� � # # ! � 	 � � � * � �/� $ � # ! � 	 � � �/� $ , a distribution of in-
dependent Bernoulli random variables;

2. sampling
� ��� � # # ! � 	 � ��� � � � � � * � �/� $ ��� ��� � # ! � ����� � � 	 � ��� �� � � � �/� ����� ��� $ ,

in which
� ��� ������ � � is distributed as

� �
conditional on

� ��� ������ ��� � � � � ����� ��� if
� ��� �� � %

, and is distributed as
� �

conditional on at least one com-

ponent of
� ��� ������ ��� being equal to � ����� ��� if �

��� �� � � ;
3. sampling *�� from a symmetric random walk distribution, and ac-

cepting *�� as * ��� � with probability � �
,	��
 ������ � � ����� � � �

� �
, � 
 � ����� � � ����� � � � ��� ���

����� 
 ,	� �
� �
,	� �

� ��� �����

 , � � � � , � � ;

4. sampling
� ��� � # # ! � 	 � ��� � � � ��� � � * ��� � �/� $ � � !�� � , ����� � ���� � ����� $ ,

a Dirichlet distribution where �� � ����� is the empirical distribution of
the current state of

�
.

The updates (1) and (3) for � and * are based on partial conditionals, that is,
the conditional distributions given some, but not all, of the current values
of the other components. Such partial conditioning is justified by noting
that the above sampling scheme is equivalent to
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Step 1: a Gibbs update for ( � � � );

Step 2: a Gibbs update for
�

;

Step 3: a Hastings update for ( *�� � );

Step 4: a Gibbs update for
�

.

The equivalence can be seen via the following general argument: Suppose
we wish to estimate a generic joint distribution # ! & �/� � � $ by MCMC meth-
ods. In some cases, it may be more desirable to update & based on # ! & 	 � $
rather than the full conditional # ! & 	 � � � $ . This can be done by sampling
an & � from a desired proposal distribution

� � ! & � 	 & � � $ , then “pretending”
to sample ��� from # !�� 	 & ��� � $ . The proposal ! & � �/����$ is then accepted with
probability# ! & � �/� � 	 � $# ! & �/� 	 � $

� ! & �/� 	 & � �/� � � � $� ! & � �/� � 	 & �/� � � $ � # ! & � 	 � $�# !�� � 	 & � � � $# ! & 	 � $�# !�� 	 & � � $ # !�� 	 & � � $ � � ! & 	 & � � � $# !�� � 	 & � � � $ � � ! & � 	 & � � $
� # ! & � 	 � $ � � ! & 	 & ��� � $# ! & 	 � $ � � ! & � 	 & � � $ 


By using a full conditional for � � and a proposal distribution for & � that
doesn’t depend on � (for example a partial conditional as in Step 1 above,
or a symmetric random walk as in Step 3), we have ensured our accep-
tance probability of ! & � �/� � $ doesn’t depend on � � . Therefore, � � doesn’t
actually need to be generated at this stage; instead, it can be updated at the
next stage, using a potentially different proposal mechanism. For a more
detailed discussion of partial conditioning, see Besag, Green, Higdon, and
Mengersen (1995, Appendix 2). We base our Markov chain on partial con-
ditionals for the reasons given below.

To improve mixing: Although the chain based on the full conditionals is
irreducible, it doesn’t mix very well. This is because the conditional
distribution of � given

�
,
�

and � is often degenerate: Consider a
single subkindred � whose founder has unknown genotype � � . Note
that ��� � %

implies the event $ � � ��� ����� � � � � � � ����� ��� ��� � �	��
�
�
�� � � � ,
i.e. if the subkindred founder does not carry � , then the tumor counts
of its offspring are non-suppressed. On the other hand, $����� � � � �
� � , so the full conditional of � � is a point mass at one if $ � does
not hold. Given � �� � � , sampling an

� �
to satisfy $ � is possible but

extremely unlikely. This in turn makes the probability � ! !�� ��� �	 �%�	
�
�
	 � � $ very small, and leads to poor mixing. This difficulty is

avoided by sampling � ��� � conditional on
� �

and � only.
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To reduce calculations and numerical errors: In the case of the Hast-
ings step for * , one would typically base the acceptance probability
of * � on # !�* � 	 � � � � � �/� $ , which reduces to # !�* � 	 � $ . Since

� 	 * � is
distributed as a Dirichlet process, computing this acceptance proba-
bility involves calculating

� !�� � , � ! � $�$ for all possible latent tumor
counts

�
. Many values of

��, � ! � $ will be extremely small, making the
calculation of the Gamma function prone to numerical errors. On the
other hand, the conditional distribution of * � given only

�
involves

computing
� !�� ��, � ! � $�$ only for those values of

�
occurring in the

sampled set of the latent tumor counts
�

. As
� , � ! � $ is typically

larger for sampled values of
�
, this modification of the sampling

scheme tends to reduce not only the number, but also the magnitude
of the errors made in computing the Gamma function.

Finally, we note the updates for * can be done component by compo-
nent. That is, proposals and acceptances can be made separately for

�
, � ,

and � , and so after one scan of the chain, * ��� � could be the same as * � ,
or could differ at one, two, or three component values. This component
by component method of updating was used to make the inference in the
following section.

5.2 Posterior Inference

For the purpose of data analysis, all tumor count distributions were con-
ditioned to lie on the integers from zero to ninety. The sampling scheme
described above was coded in the C++ programming language, and was
used to generate four chains of 200,000 scans each, recording output every
� % % th scan. The starting values of

� �
for the four chains were generated

by sampling
� �

from
� !�� � , � $ , using four different values of * � , given in

Table 8.1.
The output of the chain is very high-dimensional: For diagnostics we

only report on sequences of mean tumor count for the non-suppressed
and suppressed groups, $ ! � � 	 � $ and $ ! � � 	 � $ . As can be seen in Fig-
ure 8.4, after about 20,000 scans the four separate sequences of $ ! � � 	 � $
and $ ! � � 	 � $ seem to have converged to similar distributions. We delete
the first 50,000 scans from each chain to allow for burn in, and compute
the sample acf values from the remaining

��� ��� % % scans (150,000 scans
subsampled every � % % th scan), given in Table 8.2.

The
��� ��� % % scans recorded after burn in were used to compute poste-

rior quantities of interest, some of which are displayed in Figure 8.5. The
first panel shows the posterior mean CDF’s of the two stochastically or-
dered groups in heavy lines, with confidence bands in lighter lines. The
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FIGURE 8.4. Sequences of (a)
� ��� ��� � �

and (b)
� ��� ��� � �

for four different chains.

Chain #
� � � �

1 20 125 0.25
2 20 175 0.25
3 17 125 0.75
4 17 175 0.75

TABLE 8.1. Starting Values of
�� 	 �	��
� � 
�� � �

.

confidence bands represent the range of the CDF’s saved from the chain,
that is every � % % th sample after the first 50,000 scans. The second panel
gives a contour plot of the joint posterior density of $ ! � � 	 � $ and $ ! � � 	 � $ .
The contour lines represent highest posterior density regions of 20, 50, 80,
90, and 95 percent probability. The posterior means of these parameters
are 19.11 and 5.89 respectively, with posterior standard deviations of 0.34
and 0.33 (based on weighted averages of within-chain and between-chain
variances). The standard deviations of the tumor count distributions are
estimated as 11.37 and 4.15. The third panel gives the marginal posterior
distribution of the multiplicative effect � of � in the base model, which has
a posterior mean and mode of .31, and a posterior standard deviation of
.034. These three plots show the estimated effect of � to be quite large,
giving about a 70% reduction in mean tumor count between the two pop-
ulations. This is an important result, as an allele with such a large effect is
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Lag 100 Lag 500 Lag 1000 Lag 5000
acf( $ ! � � 	 � $ ) 0.0590 0.0149 -0.0277 -0.0107
acf( $ ! � � 	 � $ ) 0.7549 0.4637 0.2524 0.0102

TABLE 8.2. Sample Autocorrelation

of biological significance and warrants further study.
Another important piece of output from the Markov chain is the pos-

terior distribution of the subkindred genotypes � � ��
�
�
�� ��� (the posterior
expectation of these variables for some subkindreds are plotted along the
top of Figure 3). This output allows us to identify likely carriers and non-
carriers of � , which in turn will aid us in the next stage of inquiry—
mapping the location of the modifier gene in the mouse genome.

6 Discussion

We have developed a model which allows us to measure the effect of a
modifier allele on intestinal tumor count. From our analysis, we estimate
the effect of the � allele to be a 70% reduction in the number of intestinal
tumors in Min mice. Our model also identifies likely carriers and non-
carriers of � , which will allow us to map the location of the modifier gene
once genetic marker data has been gathered.

Our model for suppressed and non-suppressed tumor count distribu-
tions involves a nonparametric prior on the space of pairs of stochasti-
cally ordered distributions. The prior is based on a Dirichlet distribution
centered around a parametric negative binomial/binomial model for latent
tumor counts, which allows for model flexibility while retaining a degree
of smoothness. We have selected a fixed value of the weight parameter� in our Dirichlet prior, claiming that � � � % represents our prior beliefs
about the tumor count sampling distributions. These prior beliefs are based
on knowledge of tumor count distributions of similar mouse populations.
Nevertheless, the analysis in this paper was redone with fixed � -values of
1 and 100, giving results very similar to those presented in this paper. Al-
ternatively, we could have put a prior on � (as discussed in Escobar and
West (1995)), although the insensitivity of the results to the choice of fixed� suggests this is unnecessary.

The model discussed in this paper can be extended to data analyses
where there is an intuitive partial ordering on more than two subpopula-
tions of the dataset. Modeling such an ordering can be accomplished via
a multivariate distribution

�
for latent observations

�
, such that the com-



340 Hoff, Halberg, Shedlovsky, Dove and Newton

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s_1,s_2

F

(a)

E(s_1|P)

E
(s

_2
|P

)

 0.95 

 0.9 

 0.8 

 0.5 

 0.2 

17 18 19 20 21

4
5

6
7

8

(b)

0.20 0.25 0.30 0.35 0.40

0
2

4
6

8
10

12

p

(c)

FIGURE 8.5. Posterior Quantities: (a) Bayes estimates of tumor count CDF’s; (b)
Posterior joint distribution of

� ��� � � � � 
 � ��� � � � �
; (c) Posterior distribution of

�
.



8. Identifying Carriers of a Genetic Modifier 341

ponents of
�

are ordered a.s.
�

according to the desired partial ordering.
Such a model is presented in Hoff (2000) for a collection of four partially
ordered distributions.
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